Skip to main content

Advertisement

Log in

Early involvement of small inhibitory cortical interneurons in Alzheimer’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Work on acute models of cortical injury has revealed a population of small GABAergic interneurons that are induced to increase their low constitutive expression of neuronal nitric oxide (NO) synthase (nNOS). In some cases, this activation may play a role in NO-mediated degeneration of pyramidal neurons. In this report, we explore the anatomy of various classes of cortical nNOS (+) (nitrergic) neurons, with emphasis on small interneurons, in the medial temporal lobe of subjects with Alzheimer’s disease (AD) from two well-characterized cohorts, the Baltimore Longitudinal Study on Aging (BLSA) and the Religious Order Study (ROS). We find that small calbindin (+) cortical interneurons are induced to high levels of NADPHd/nNOS reactivity early in AD and abound in areas with emerging neurofibrillary pathology, that is, in entorhinal cortex in the beginning of the limbic stage of Braak, in hippocampal CA1 in the mature limbic stage and in temporal neocortex in the late limbic stage. This pattern was robust and significant in the younger of the two AD cohorts studied (BLSA), but persisted as a trend in the older cohort (ROS). In optimally prepared material, we find a significant correlation between numbers of these interneurons and markers of neuronal cell death, for example, caspase-3 activation. Our results show that small cortical inhibitory interneurons represent an extensive signaling system that is induced to higher levels of NADPHd/nNOS expression early in the paralimbic–limbic–neocortical sequence of AD progression. We propose that nNOS/NO signaling initiated in these interneurons can serve as a marker of early cortical injury in AD. The specific role played by inhibitory interneurons and NO in the elaboration of specific neuropathologies associated with AD, that is, Aβ and neurofibrillary deposits and cell death deserves further exploration in experimental animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amaral DG, Insausti R (1990) Hippocampal formation. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 711–755

    Google Scholar 

  2. Appel SH (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann Neurol 10:499–505

    Article  PubMed  CAS  Google Scholar 

  3. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    Article  PubMed  CAS  Google Scholar 

  4. Behrens MI, Koh JY, Muller MC, Choi DW (1996) NADPH diaphorase-containing striatal or cortical neurons are resistant to apoptosis. Neurobiol Dis 3:72–75

    Article  PubMed  CAS  Google Scholar 

  5. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  6. Burek MJ, Oppenheim RW (1998) Cellular interactions that regulate programmed cell death in the developing vertebrate nervous system. In: Koliatsos VE, Ratan RR (eds) Cell death and diseases of the nervous system. Humana Press, Totowa, pp 145–180

    Google Scholar 

  7. Capurso SA, Calhoun ME, Sukhov RR, Mouton PR, Price DL, Koliatsos VE (1997) Deafferentation causes apoptosis in cortical sensory neurons in the adult rat. J Neurosci 17:7372–7384

    PubMed  CAS  Google Scholar 

  8. Castro-Blanco S, Encinas JM, Serrano J, Alonso D, Gomez MB, Sanchez J, Rios-Tejada F, Fernandez-Vizarra P, Fernandez AP, Martinez-Murillo R, Rodrigo J (2003) Expression of nitrergic system and protein nitration in adult rat brains submitted to acute hypobaric hypoxia. Nitric Oxide-Biol Chem 8:182–201

    Article  CAS  Google Scholar 

  9. Chung KK, Dawson VL, Dawson TM (2001) The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. Trends Neurosci 24:S7–S14

    Article  PubMed  CAS  Google Scholar 

  10. Cipolloni PB, Pandya DN (1991) Golgi, histochemical, and immunocytochemical analyses of the neurons of auditory-related cortices of the rhesus-monkey. Exp Neurol 114:104–122

    Article  PubMed  CAS  Google Scholar 

  11. Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88:7797–7801

    Article  PubMed  CAS  Google Scholar 

  12. delRio MR, DeFelipe J (1997) Double bouquet cell axons in the human temporal neocortex: relationship to bundles of myelinated axons and colocalization of calretinin and calbindin D-28k immunoreactivities. J Chem Neuroanat 13:243–251

    Article  CAS  Google Scholar 

  13. Echeverry MB, Guimaraes FS, del Bel EA (2004) Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions. Neuroscience 125:981–993

    Article  PubMed  CAS  Google Scholar 

  14. Egberongbe YI, Gentleman SM, Falkai P, Bogerts B, Polak JM, Roberts GW (1994) The distribution of nitric-oxide synthase immunoreactivity in the human brain. Neuroscience 59:561–578

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez-Vizarra P, Fernandez AP, Castro-Blanco S, Encinas JM, Serrano J, Bentura ML, Munoz P, Martinez-Murillo R, Rodrigo J (2004) Expression of nitric oxide system in clinically evaluated cases of Alzheimer’s disease. Neurobiol Dis 15:287–305

    Article  PubMed  CAS  Google Scholar 

  16. Fischer HC, Kuljis RO (1994) Multiple types of nitrogen monoxide synthase-containing NADPH diaphorase-containing neurons in the human cerebral neocortex. Brain Res 654:105–117

    Article  PubMed  CAS  Google Scholar 

  17. Gabbott PLA, Bacon SJ (1995) Colocalization of NADPH diaphorase activity and GABA immunoreactivity in local circuit neurons in the medial prefrontal cortex (Mpfc) of the rat. Brain Res 699:321–328

    Article  PubMed  CAS  Google Scholar 

  18. Gastard MC, Troncoso JC, Koliatsos VE (2003) Caspase activation in the limbic cortex of subjects with early Alzheimer’s disease. Ann Neurol 54:393–398

    Article  PubMed  CAS  Google Scholar 

  19. Gold G, Bouras C, Kovari E Canuto A, Glaria BG, Malky A, Hof PR, Michel JP, Giannakopoulos P (2000) Clinical validity of Braak neuropathological staging in the oldest-old. Acta Neuropathol 99:579–582

    Article  PubMed  CAS  Google Scholar 

  20. Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–500

    PubMed  CAS  Google Scholar 

  21. Gonzalez-Albo MC, Elston GN, DeFelipe J (2001) The human temporal cortex: Characterization of neurons expressing nitric oxide synthase, neuropeptides and calcium-binding proteins, and their glutamate receptor subunit profiles. Cerebral Cortex 11:1170–1181

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez-Hernandez T, Garcia-Marin V, Perez-Delgado MDM, Gonzalez-Gonzalez ML, Rancel-Torres N, Gonzalez-Feria L (2000) Nitric oxide synthase expression in the cerebral cortex of patients with epilepsy. Epilepsia 41:1259–1268

    Article  PubMed  CAS  Google Scholar 

  23. Halliday G, Ng T, Rodriguez M, Harding A, Blumbergs P, Evans W, Fabian V, Fryer J, Gonzales M, Harper C, Kalnins R, Masters CL, McLean C, Milder DG, Pamphlett R, Scott G, Tannenberg A, Kril J (2002) Consensus neuropathological diagnosis of common dementia syndromes: testing and standardising the use of multiple diagnostic criteria. Acta Neuropathol 104:72–78

    Article  PubMed  CAS  Google Scholar 

  24. Harding AJ, Kril JJ, Halliday GM (2000) Practical measures to simplify the Braak tangle staging method for routine pathological screening. Acta Neuropathol 99:199–208

    Article  PubMed  CAS  Google Scholar 

  25. Hedlich A, Luth HJ, Seidel J (1990) Spinefreie Gabaergic Neurons in the Visual-Cortex of the Rat. J Hirnforschung 31:137–151

    CAS  Google Scholar 

  26. Hof PR, Cox K, Young WG, Celio MR, Rogers J, Morrison JH (1991) Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 50:451–462

    Article  PubMed  CAS  Google Scholar 

  27. Hof PR, Morrison JH (1999) The cellular basis of cortical disconnection in Alzheimer disease and related dementing conditions. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease. Lippincott Williams & Wilkins, Philadelphia, pp 207–232

    Google Scholar 

  28. Hope BT, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88:2811–2814

    Article  PubMed  CAS  Google Scholar 

  29. Hope BT, Vincent SR (1989) Histochemical characterization of neuronal NADPH-diaphorase. J Histochem Cytochem 37:653–661

    PubMed  CAS  Google Scholar 

  30. Huh Y, Heo K, Park C, Ahn H (2000) Transient induction of neuronal nitric oxide synthase in neurons of rat cerebral cortex after status epilepticus. Neurosci Lett 281:49–52

    Article  PubMed  CAS  Google Scholar 

  31. Hyman BT, Gomez-Isla T (1994) Alzheimer’s disease is a laminar, regional, and neural system specific disease, not a global brain disease. Neurobiol Aging 15:353–354

    Article  PubMed  CAS  Google Scholar 

  32. Hyman BT, Marzloff K, Wenniger JJ, Dawson TM, Bredt DS, Snyder SH (1992) Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer’s disease. Ann Neurol 32:818–820

    Article  PubMed  CAS  Google Scholar 

  33. Ishida A, Ishiwa S, Trescher WH, Nakajima W, Lange MS, Blue ME, Johnston MV (2001) Delayed increase in neuronal nitric oxide synthase immunoreactivity in thalamus and other brain regions after hypoxic-ischemic injury in neonatal rats. Exp Neurol 168:323–333

    Article  PubMed  CAS  Google Scholar 

  34. Judas M, Sestan N, Kostovic I (1999) Nitrinergic neurons in the developing and adult human telencephalon: Transient and permanent patterns of expression in comparison to other mammals. Microsc Res Tech 45:401–419

    Article  PubMed  CAS  Google Scholar 

  35. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  36. Koliatsos VE, Dawson TM, Kecojevic A, Zhou Y, Wang Y-F, Huang K-X (2004) Cortical interneurons become activated by deafferentation and instruct the apoptosis of pyramidal neurons. Proc Natl Acad Sci USA 101:14264–14269

    Article  PubMed  CAS  Google Scholar 

  37. Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D, Mufson EJ (2001) Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49:202–213

    Article  PubMed  CAS  Google Scholar 

  38. Laine R, de Montellano PRO (1998) Neuronal nitric oxide synthase isoforms alpha and mu are closely related calpain-sensitive proteins. Mol Pharmacol 54:305–312

    PubMed  CAS  Google Scholar 

  39. Leuba G, Kraftsik R, Saini K (1998) Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol 152:278–291

    Article  PubMed  CAS  Google Scholar 

  40. Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90:7951–7955

    Article  PubMed  CAS  Google Scholar 

  41. Luth HJ, Hedlich A, Hilbig H, Winkelmann E, Mayer B (1994) Morphological analyses of NADPH-diaphorase nitric-oxide synthase positive structures in human visual-cortex. J Neurocytol 23:770–782

    Article  PubMed  CAS  Google Scholar 

  42. Meyer G, Gonzalezhernandez T, Galindomireles D, Castaneyraperdomo A, Ferrestorres R (1991) The efferent projections of neurons in the white matter of different cortical areas of the adult-rat. Anat Embryol 184:99–102

    Article  PubMed  CAS  Google Scholar 

  43. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    PubMed  CAS  Google Scholar 

  44. Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21:7551–7560

    PubMed  CAS  Google Scholar 

  45. Mufson EJ, Chen EY, Cochran EJ, Beckett LA, Bennett DA, Kordower JH (1999) Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Exp Neurol 158:469–490

    Article  PubMed  CAS  Google Scholar 

  46. Nath R, Huggins M, Glantz SB, Morrow JS, McGinnis K, Nadimpalli R, Wanga KK (2000) Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: marker for neuronal apoptosis. Neurochem Int 37:351–361

    Article  PubMed  CAS  Google Scholar 

  47. Norris PJ, Faull RLM, Emson PC (1996) Neuronal nitric oxide synthase (nNOS) mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer’s disease brains. Mol Brain Res 41:36–49

    Article  CAS  PubMed  Google Scholar 

  48. Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci USA 82:4531–4534

    Article  PubMed  CAS  Google Scholar 

  49. Perichon, R., Gastard, M, Bora, S. H., and Koliatsos, VE (2001) A nitric oxide synthase-positive, inducible system in the limbic cortex: anatomical features and conditional role in apoptosis. Society for Neuroscience Abstracts 27:2001 [108.17]

    Google Scholar 

  50. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    Article  PubMed  CAS  Google Scholar 

  51. Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15:3775–3787

    PubMed  CAS  Google Scholar 

  52. Regidor J, Montesdeoca J, Ramirezgonzalez JA, Hernandezurquia CM, Divac I (1993) Bilateral induction of NADPH-diaphorase activity in neocortical and hippocampal-neurons by unilateral injury. Brain Res 631:171–174

    Article  PubMed  CAS  Google Scholar 

  53. Rohn TT, Head E, Su JH, Anderson AJ, Bahr BA, Cotman CW, Cribbs DH (2001) Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer’s disease. Am J Pathol 158:189–198

    PubMed  CAS  Google Scholar 

  54. Terry RD, Peck A, DeTeresa R, Schechter R, Horoupian DS (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10:184–192

    Article  PubMed  CAS  Google Scholar 

  55. Thorns V, Hansen L, Masliah E (1998) nNOS expressing neurons in the entorhinal cortex and hippocampus are affected in patients with Alzheimer’s disease. Exp Neurol 150:14–20

    Article  PubMed  CAS  Google Scholar 

  56. Troncoso JC, Sukhov RR, Kawas CH, Koliatsos VE (1996) In situ labeling of dying cortical neurons in normal aging and in Alzheimer’s disease: correlations with senile plaques and disease progression. J Neuropathol Exp Neurol 55:1134–1142

    Article  PubMed  CAS  Google Scholar 

  57. Uetsuki T, Takemoto K, Nishimura I, Okamoto M, Niinobe M, Momoi T, Miura M, Yoshikawa K (1999) Activation of neuronal caspase-3 by intracellular accumulation of wild- type Alzheimer amyloid precursor protein. J Neurosci 19:6955–6964

    PubMed  CAS  Google Scholar 

  58. Unger JW, Lange W (1992) NADPH-diaphorase-positive cell populations in the human amygdala and temporal cortex: neuroanatomy, peptidergic characteristics and aspects of aging and Alzheimer’s disease. Acta Neuropathol 83:636–646

    Article  PubMed  CAS  Google Scholar 

  59. Uttenthal LO, Alonso D, Fernandez AP, Campbell RO, Moro MA, Leza JC, Lizasoain I, Esteban FJ, Barroso JB, Valderrama R, Pedrosa JA, Peinado MA, Serrano J, Richart A, Bentura ML, Santacana M, Martinez-Murillo R, Rodrigo J (1998) Neuronal and inducible nitric oxide synthase and nitrotyrosine immunoreactivities in the cerebral cortex of the aging rat. Microsc Res Tech 43:75–88

    Article  PubMed  CAS  Google Scholar 

  60. Valtschanoff JG, Weinberg RJ, Kharazia VN, Schmidt HHHW, Nakane M, Rustioni A (1993) Neurons in rat cerebral-cortex that synthesize nitric-oxide–NADPH diaphorase histochemistry, NOS immunocytochemistry, and colocalization with GABA. Neurosci Lett 157:157–161

    Article  PubMed  CAS  Google Scholar 

  61. Vincent SR, Johansson O, Hokfelt T, Skirboll L, Elde RP, Terenius L, Kimmel J, Goldstein M (1983) NADPH-diaphorase: a selective histochemical marker for striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities. J Comp Neurol 217:252–263

    Article  PubMed  CAS  Google Scholar 

  62. West MJ, Slomianka L, Gundersen HJG (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  PubMed  CAS  Google Scholar 

  63. Wong PC, Cai H, Borchelt DR, Price DL (2002) Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci 5:633–639

    Article  PubMed  CAS  Google Scholar 

  64. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  PubMed  CAS  Google Scholar 

  65. Yamatsuji T, Matsui T, Okamoto T, Komatsuzaki K, Takeda S, Fukumoto H, Iwatsubo T, Suzuki N, Asami-Odaka A, Ireland S, Kinane TB, Giambarella U, Nishimoto I (1996) G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer’s disease-associated mutants of APP. Science 272:1349–1352

    Article  PubMed  CAS  Google Scholar 

  66. Yan XX, Garey LJ (1997) Morphological diversity of nitric oxide synthesising neurons in mammalian cerebral cortex. J Brain Res–J Hirnforschung 38:165–172

    CAS  Google Scholar 

  67. Yan XX, Jen LS, Garey LJ (1996) NADPH-diaphorase-positive neurons in primate cerebral cortex colocalize with GABA and calcium-binding proteins. Cereb Cortex 6:524–529

    Article  PubMed  CAS  Google Scholar 

  68. Zhou Y, Chen H, Koliatsos VE (2004) Pharmacological evidence for a glutamatergic activation––nitric oxide synthesis step in the early signaling oftranssynaptic apoptosis in limbic cortex. Society for Neuroscience Abstracts, No. 794.16

Download references

Acknowledgments

We thank Ms Annie Welsh for her expert technical assistance. This work was supported by NIH grants RO1 AG16263 and 3 P50 AG05146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis E. Koliatsos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koliatsos, V.E., Kecojevic, A., Troncoso, J.C. et al. Early involvement of small inhibitory cortical interneurons in Alzheimer’s disease. Acta Neuropathol 112, 147–162 (2006). https://doi.org/10.1007/s00401-006-0068-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0068-6

Keywords

Navigation