Skip to main content

Advertisement

Log in

Protein co-expression with axonal injury in multiple sclerosis plaques

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Damage to axons in acute multiple sclerosis (MS) lesions is now well established but the mechanisms of this damage remain obscure. Here we have applied a panel of antibodies that identify cell populations and proteins contained in them with a view to detecting those cells and proteins that are localised particularly closely to damaged axons in acute, sub-acute and border-active MS plaques. Results are expressed semi-quantitatively and graphs produced that show that many of the markers show enhanced expression at sites of axon damage. However, the sharpest increase in expression in relation to axon damage was seen for Calpain I (μ-calpain), inducible nitric oxide synthase and MMP-2, suggesting that these proteins may form part of a group of proteins responsible for the initiation of myelin and/or axon damage seen in MS lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anthony DC, Ferguson B, Matyzak MK, Miller KM, Esiri MM, Perry VH (1997) Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol 23:406–415

    Article  PubMed  CAS  Google Scholar 

  2. Araujo Couto L, Sampaio Narciso M, Hokoc JN, Blanco Martinez AM (2004) Calpain inhibitor 2 prevents axonal degeneration of opossum optic nerve fibers. J Neurosci Res 77:410–419

    Article  PubMed  CAS  Google Scholar 

  3. Bechtold DA, Yue X, Evans RM, Davies M, Gregson NA, Smith KJ (2005) Axonal protection in experimental autoimmune neuritis by the sodium channel blocking agent flecainide. Brain 128:18–28

    Article  PubMed  Google Scholar 

  4. Benjamins JA, Nedelkoska L, George EB (2003) Protection of mature oligodendrocytes by inhibitors of caspases and calpains. Neurochem Res 28:143–152

    Article  PubMed  CAS  Google Scholar 

  5. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123(Pt 6):1174–1183

    Article  PubMed  Google Scholar 

  6. Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206:165–171

    Article  PubMed  CAS  Google Scholar 

  7. Bo L, Dawson TM, Wesselingh S, Mork S, Choi S, Kong PA, Hanley D, Trapp BD (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36:778–786

    Article  PubMed  CAS  Google Scholar 

  8. Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg JR, Steinman L (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294:1731–1735

    Article  PubMed  CAS  Google Scholar 

  9. Chandler S, Cossins J, Lury J, Wells G (1996) Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochem Biophys Res Commun 228:421–429

    Article  PubMed  CAS  Google Scholar 

  10. Cossins JA, Clements JM, Ford J, Miller KM, Pigott R, Vos W, Van der Valk P, De Groot CJ (1997) Enhanced expression of MMP-7 and MMP-9 in demyelinating multiple sclerosis lesions. Acta Neuropathol (Berl) 94:590–598

    Article  CAS  Google Scholar 

  11. Cuzner ML, Gveric D, Strand C, Loughlin AJ, Paemen L, Opdenakker G, Newcombe J (1996) The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol 55:1194–1204

    Article  PubMed  CAS  Google Scholar 

  12. Davie CA, Barker GJ, Webb S, Tofts PS, Thompson AJ, Harding AE, McDonald WI, Miller DH (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118(Pt 6):1583–1592

    Article  PubMed  Google Scholar 

  13. DeLuca GC, Ebers GC, Esiri MM (2004) Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts. Brain 127:1009–1018

    Article  PubMed  CAS  Google Scholar 

  14. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38:901–909

    Article  PubMed  Google Scholar 

  15. De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121(Pt 8):1469–1477

    Article  PubMed  Google Scholar 

  16. Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM (2000) Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 123(Pt 9):1845–1849

    Article  PubMed  Google Scholar 

  17. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(Pt 3):393–399

    Article  PubMed  Google Scholar 

  18. Filippi M (2001) Linking structural, metabolic and functional changes in multiple sclerosis. Eur J Neurol 8:291–297

    Article  PubMed  CAS  Google Scholar 

  19. Filippi M, Paty DW, Kappos L, Barkhof F, Compston DA, Thompson AJ, Zhao GJ, Wiles CM, McDonald WI, Miller DH (1995) Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study. Neurology 45:255–260

    PubMed  CAS  Google Scholar 

  20. Filippi M, Bozzali M, Rovaris M, Gonen O, Kesavadas C, Ghezzi A, Martinelli V, Grossman RI, Scotti G, Comi G, Falini A (2003) Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 126:433–437

    Article  PubMed  CAS  Google Scholar 

  21. Guo H, Cai CQ, Schroeder RA, Kuo PC (2001) Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. J Immunol 166:1079–1086

    PubMed  CAS  Google Scholar 

  22. Hashimoto M, Koda M, Ino H, Murakami M, Yamazaki M, Moriya H (2003) Upregulation of osteopontin expression in rat spinal cord microglia after traumatic injury. J Neurotrauma 20:287–296

    Article  PubMed  Google Scholar 

  23. Hill KE, Zollinger LV, Watt HE, Carlson NG, Rose JW (2004) Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression and association with myelin damage. J Neuroimmunol 151:171–179

    Article  PubMed  CAS  Google Scholar 

  24. Jansson M, Panoutsakopoulou V, Baker J, Klein L, Cantor H (2002) Cutting edge: attenuated experimental autoimmune encephalomyelitis in eta-1/osteopontin-deficient mice. J Immunol 168:2096–2099

    PubMed  CAS  Google Scholar 

  25. Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ (2003) Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 53:174–180

    Article  PubMed  CAS  Google Scholar 

  26. Kim SY, Choi YS, Choi JS, Cha JH, Kim ON, Lee SB, Chung JW, Chun MH, Lee MY (2002) Osteopontin in kainic acid-induced microglial reactions in the rat brain. Mol Cells 13:429–435

    PubMed  CAS  Google Scholar 

  27. Kim MD, Cho HJ, Shin T (2004) Expression of osteopontin and its ligand, CD44, in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. J Neuroimmunol 151:78–84

    Article  PubMed  CAS  Google Scholar 

  28. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276

    PubMed  CAS  Google Scholar 

  29. Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    Article  PubMed  Google Scholar 

  30. Lassmann H (2003) Axonal injury in multiple sclerosis. J Neurol Neurosurg Psychiatry 74:695–697

    Article  PubMed  CAS  Google Scholar 

  31. Li X, O’Regan AW, Berman JS (2003) IFN-gamma induction of osteopontin expression in human monocytoid cells. J Interferon Cytokine Res 23:259–265

    Article  PubMed  CAS  Google Scholar 

  32. Lindberg RL, De Groot CJ, Montagne L, Freitag P, van der Valk P, Kappos L, Leppert D (2001) The expression profile of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in lesions and normal appearing white matter of multiple sclerosis. Brain 124:1743–1753

    Article  PubMed  CAS  Google Scholar 

  33. Liu JS, Zhao ML, Brosnan CF, Lee SC (2001) Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol 158:2057–2066

    PubMed  CAS  Google Scholar 

  34. Losseff NA, Webb SL, O’Riordan JI, Page R, Wang L, Barker GJ, Tofts PS, McDonald WI, Miller DH, Thompson AJ (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119(Pt 3):701–708

    Article  PubMed  Google Scholar 

  35. Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123(Pt 2):308–317

    Article  PubMed  Google Scholar 

  36. Maeda A, Sobel RA (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55:300–309

    Article  PubMed  CAS  Google Scholar 

  37. Morris CS, Esiri MM, Sprinkle TJ, Gregson N (1994) Oligodendrocyte reactions and cell proliferation markers in human demyelinating diseases. Neuropathol Appl Neurobiol 20:272–281

    Article  PubMed  CAS  Google Scholar 

  38. Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW (2003) cDNA microarray analysis in multiple sclerosis lesions: detection of genes associated with disease activity. Brain 126:1048–1057

    Article  PubMed  Google Scholar 

  39. Newman TA, Woolley ST, Hughes PM, Sibson NR, Anthony DC, Perry VH (2001) T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases. Brain 124:2203–2214

    Article  PubMed  CAS  Google Scholar 

  40. Peterson J, Kidd G, Trapp BD (2005) Axonal degeneration in multiple sclerosis: the histopathological evidence. In: Waxman S (ed) Multiple sclerosis as a neuronal disease. Elsevier, New York, pp. 165–184

    Chapter  Google Scholar 

  41. Petzold A, Eikelenboom MJ, Keir G, Grant D, Lazeron RH, Polman CH, Uitdehaag BM, Thompson EJ, Giovannoni G (2005) Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J Neurol Neurosurg Psychiatry 76:206–211

    Article  PubMed  CAS  Google Scholar 

  42. Raine CS (1994) The Dale E. McFarlin Memorial Lecture: the immunology of the multiple sclerosis lesion. Ann Neurol 36(Suppl):S61–S72

    Article  PubMed  CAS  Google Scholar 

  43. Ray SK, Banik NL (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2:173–189

    Article  PubMed  CAS  Google Scholar 

  44. Redford EJ, Kapoor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain 120(Pt 12):2149–2157

    Article  PubMed  Google Scholar 

  45. Rodriguez M (2003) A function of myelin is to protect axons from subsequent injury: implications for deficits in multiple sclerosis. Brain 126:751–752

    Article  PubMed  Google Scholar 

  46. Rosenberg GA (2002) Matrix metalloproteinases and neuroinflammation in multiple sclerosis. Neuroscientist 8:586–595

    Article  PubMed  CAS  Google Scholar 

  47. Saatman KE, Abai B, Grosvenor A, Vorwerk CK, Smith DH, Meaney DF (2003) Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. J Cereb Blood Flow Metab 23:34–42

    Article  PubMed  CAS  Google Scholar 

  48. Saido TC, Sorimachi H, Suzuki K (1994) Calpain: new perspectives in molecular diversity and physiological–pathological involvement. FASEB J 8:814–822

    PubMed  CAS  Google Scholar 

  49. Selvaraju R, Bernasconi L, Losberger C, Graber P, Kadi L, Avellana-Adalid V, Picard-Riera N, Van Evercooren AB, Cirillo R, Kosco-Vilbois M, Feger G, Papoian R, Boschert U (2004) Osteopontin is upregulated during in vivo demyelination and remyelination and enhances myelin formation in vitro. Mol Cell Neurosci 25:707–721

    Article  PubMed  CAS  Google Scholar 

  50. Shields DC, Schaecher KE, Saido TC, Banik NL (1999) A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc Natl Acad Sci USA 96:11486–11491

    Article  PubMed  CAS  Google Scholar 

  51. Shin SL, Cha JH, Chun MH, Chung JW, Lee MY (1999) Expression of osteopontin mRNA in the adult rat brain. Neurosci Lett 273:73–76

    Article  PubMed  CAS  Google Scholar 

  52. da Silva RP, Gordon S (1999) Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophage-specific endosomal protein. Biochem J 338(Pt 3):687–694

    Article  PubMed  CAS  Google Scholar 

  53. Sinclair C, Mirakhur M, Kirk J, Farrell M, McQuaid S (2005) Up-regulation of osteopontin and alphaBeta-crystallin in the normal-appearing white matter of multiple sclerosis: an immunohistochemical study utilizing tissue microarrays. Neuropathol Appl Neurobiol 31:292–303

    Article  PubMed  CAS  Google Scholar 

  54. Smith KJ (2005) Nitric oxide and axonal patholophysiology. In: Waxman S (eds) Multiple sclerosis as a neuronal disease. Elsevier, New York, pp. 255–273

    Chapter  Google Scholar 

  55. Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9:69–92

    PubMed  CAS  Google Scholar 

  56. Smith KJ, Kapoor R, Hall SM, Davies M (2001) Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol 49:470–476

    Article  PubMed  CAS  Google Scholar 

  57. Steinman L, Martin R, Bernard C, Conlon P, Oksenberg JR (2002) Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu Rev Neurosci 25:491–505

    Article  PubMed  CAS  Google Scholar 

  58. Stys PK (2004) White matter injury mechanisms. Curr Mol Med 4:113–130

    Article  PubMed  CAS  Google Scholar 

  59. Takahashi F, Takahashi K, Maeda K, Tominaga S, Fukuchi Y (2000) Osteopontin is induced by nitric oxide in RAW 264.7 cells. IUBMB Life 49:217–221

    Article  PubMed  CAS  Google Scholar 

  60. Touil T, Deloire-Grassin MS, Vital C, Petry KG, Brochet B (2001) In vivo damage of CNS myelin and axons induced by peroxynitrite. Neuroreport 12:3637–3644

    Article  PubMed  CAS  Google Scholar 

  61. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  62. Weber GF, Ashkar S, Glimcher MJ, Cantor H (1996) Receptor–ligand interaction between CD44 and osteopontin (Eta-1). Science 271:509–512

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the relatives of those whose autopsy tissue has been included in this study for their permission for use of the tissue in research. Dr John Tzartos kindly performed the double labelling experiment and we are most grateful for his help. Financial support was provided by the Multiple Sclerosis Society of Great Britain and Northern Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Esiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Sanchez, M., Williams, K., DeLuca, G.C. et al. Protein co-expression with axonal injury in multiple sclerosis plaques. Acta Neuropathol 111, 289–299 (2006). https://doi.org/10.1007/s00401-006-0045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0045-0

Keywords

Navigation