Skip to main content
Log in

Radiation exposure in cryoballoon ablation compared to radiofrequency ablation with three-dimensional electroanatomic mapping in atrial fibrillation patients

Strahlenexposition bei der Kryoballonablation im Vergleich zur Radiofrequenzablation mit 3-dimensionaler elektroanatomischer Kartierung bei Patienten mit Vorhofflimmern

  • Original Contributions
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Abstract

Background

Catheter ablation for atrial fibrillation (AF) has become an established treatment to control symptoms. AF ablation either by cryoballoon or radiofrequency using three-dimensional (3D) electroanatomical mapping exposes patients and medical staff to increased doses of radiation.

Aim

To compare radiation exposure in patients during cryoballoon ablation compared to 3D electro-anatomic mapping catheter ablation in AF patients.

Methods

A total of 30 patients referred for AF ablation underwent full history taking, 12-lead ECG, echocardiogram, and pulmonary vein isolation either by 3D mapping system or cryoballoon. Procedure duration and fluoroscopy time were collected and analyzed. Radiation exposure was measured using thermoluminescent dosimeters placed at different sites related to patients and medical staff.

Result

The procedural time was statistically significantly longer with 3D mapping compared to cryoballoon but showed no significant difference regarding fluoroscopy time. There was a significantly higher radiation skin dose at the right scapular area in the cryoballoon ablation group, in addition to higher peak skin dose compared to the 3D mapping ablation group. There was no statistically significant correlation between peak skin doses and fluoroscopy duration but a statistically significant correlation between peak skin dose and usage of high frame rate and the high dose area product.

Conclusion

Cryoballoon ablation was found to be associated with higher peak skin radiation doses especially in the right scapular area. Knowing dose area product and peak skin dose is more important than fluoroscopy time alone.

Zusammenfassung

Hintergrund

Die Katheterablation bei Vorhofflimmern (VHF) ist eine etablierte Behandlung zur Symptomkontrolle. Bei der Therapie von VHF mittels Kryoballonablation oder Radiofrequenzablation und 3‑dimensionaler (3-D) elektroanatomischer Kartierung werden Patienten und medizinisches Personal erhöhten Strahlendosen ausgesetzt.

Zielsetzung

In dieser Studie wurde die Strahlenbelastung von VHF-Patienten verglichen, bei denen eine Kryoballonablation oder Katheterablation mit elektroanatomischer 3‑D-Kartierung durchgeführt wurde.

Methoden

Insgesamt wurden 30 zur VHF-Ablation zugewiesene Patienten einer umfassenden Anamnese, einem 12-Kanal-Elektrokardiogramm, einer Echokardiographie und einer Pulmonalvenenisolation, entweder mit 3‑D-Kartierungs-System oder mit Kryoballon, unterzogen. Verfahrens- und Durchleuchtungsdauer wurden dokumentiert und analysiert. Die Strahlenbelastung wurde mithilfe von Thermolumineszenzdosimetern gemessen, die an verschiedenen Körperstellen von Patienten und medizinischem Personal angebracht waren.

Ergebnisse

Die Verfahrensdauer war bei 3‑D-Kartierung statistisch signifikant länger als bei Einsatz eines Kryoballons. Bezüglich der Durchleuchtungsdauer zeigte sich dagegen kein signifikanter Unterschied. In der Kryoballonablationsgruppe war die Strahlendosis auf der Haut des rechten Schulterblatts signifikant erhöht, neben einer höheren Spitzendosis auf der Haut verglichen mit der 3‑D-Kartierungs-Ablationsgruppe. Es fand sich keine statistisch signifikante Korrelation zwischen Spitzenhautdosen und Durchleuchtungsdauer, aber eine statistisch signifikante Korrelation zwischen Spitzenhautdosis und Nutzung einer hohen Bildrate sowie hohem Dosis-Flächen-Produkt.

Schlussfolgerung

Für die Kryoballonablation ergab sich eine Assoziation mit höheren Spitzenstrahlendosen auf der Haut, insbesondere im Bereich des rechten Schulterblatts. Das Dosis-Flächen-Produkt und die Spitzenhautdosis zu kennen, ist wichtiger als die alleinige Durchleuchtungsdauer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cosedis Nielsen J, Johannessen A, Raatikainen P et al (2012) Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. n Engl J Med 367(17):1587–1595

    Article  Google Scholar 

  2. Mont L, Bisbal F, Hernández-Madrid A et al (2014) Catheter ablation vs. antiarrhythmic drug treatment of persistent atrial fibrillation: a multicentre, randomized, controlled trial (SARA study). Eur Heart J 35(8):501–507

    Article  Google Scholar 

  3. Haïssaguerre M, Jaïs P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339(10):659–666

    Article  Google Scholar 

  4. Arentz T, Haegeli L, Sanders P et al (2007) High-density mapping of spontaneous pulmonary vein activity initiating atrial fibrillation in humans. J Cardiovasc Electrophysiol 18:31–38

    Article  Google Scholar 

  5. Cappato R, Calkins H, Chen SA et al (2010) Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol 3(1):32–38

    Article  Google Scholar 

  6. Van Belle Y, Janse P, Rivero-Ayerza MJ et al (2007) Pulmonary vein isolation using an occluding cryoballoon for circumferential ablation: feasibility, complications, and short-term outcome. Eur Heart J 28(18):2231–2237

    Article  Google Scholar 

  7. Kuck KH, Brugada J, Fürnkranz A et al (2016) Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med 374(23):2235–2245

    Article  Google Scholar 

  8. Hunter RJ, Baker V, Finlay MC et al (2015) Point-by-point radiofrequency ablation versus the cryoballoon or a novel combined approach: a randomized trial comparing 3 methods of pulmonary vein isolation for paroxysmal atrial fibrillation (the Cryo versus RF trial). J Cardiovasc Electrophysiol 26(12):1307–1314

    Article  Google Scholar 

  9. Buiatti A, von Olshausen G, Barthel P et al (2017) Cryoballoon vs. radiofrequency ablation for paroxysmal atrial fibrillation: an updated meta-analysis of randomized and observational studies. Europace 19(3):378–384

    Article  Google Scholar 

  10. Miller DL, Vañó E, Bartal G et al (2010) Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology. J Vasc Interv Radiol 21(5):607–615

    Article  Google Scholar 

  11. Valentin J (2000) Avoidance of radiation injuries from medical interventional procedures. Ann ICRP 30(2):7–67

    Article  CAS  Google Scholar 

  12. Balter S, Hopewell JW, Miller DL et al (2010) Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair. Radiology 254(2):326–341

    Article  Google Scholar 

  13. Vano E, Kleiman NJ, Duran A, Rehani MM, Echeverri D, Cabrera M (2010) Radiation cataract risk in interventional cardiology personnel. Radiat Res 174(4):490–495

    Article  CAS  Google Scholar 

  14. Ciraj-Bjelac O, Rehani MM, Sim KH, Liew HB, Vano E, Kleiman NJ (2010) Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv 76(6):826–834

    Article  Google Scholar 

  15. Klein LW, Miller DL, Balter S et al (2009) Occupational health hazards in the interventional laboratory: time for a safer environment. Heart Rhythm 6(3):439–444

    Article  Google Scholar 

  16. Kirchhof P, Benussi S, Kotecha D et al (2016) 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 18(11):1609–1678

    Article  Google Scholar 

  17. Hindricks G, Potpara T, Dagres N et al (2020) 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J. https://doi.org/10.1093/eurheartj/ehaa612

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pappone C, Rosanio S, Oreto G et al (2000) Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation 102(21):2619–2628

    Article  CAS  Google Scholar 

  19. Linhart M, Bellmann B, Mittmann-Braun E et al (2009) Comparison of cryoballoon and radiofrequency ablation of pulmonary veins in 40 patients with paroxysmal atrial fibrillation: a case-control study. J Cardiovasc Electrophysiol 20(12):1343–1348

    Article  Google Scholar 

  20. Kühne M, Suter Y, Altmann D et al (2010) Cryoballoon versus radiofrequency catheter ablation of paroxysmal atrial fibrillation: biomarkers of myocardial injury, recurrence rates, and pulmonary vein reconnection patterns. Heart Rhythm 7(12):1770–1776

    Article  Google Scholar 

  21. Kojodjojo P, O’Neill MD, Lim PB et al (2010) Pulmonary venous isolation by antral ablation with a large cryoballoon for treatment of paroxysmal and persistent atrial fibrillation: medium-term outcomes and non-randomised comparison with pulmonary venous isolation by radiofrequency ablation. Heart 96(17):1379–1384

    Article  Google Scholar 

  22. Sorgente A, Chierchia GB, Capulzini L et al (2010) Atrial fibrillation ablation: a single center comparison between remote magnetic navigation, cryoballoon and conventional manual pulmonary vein isolation. Indian Pacing Electrophysiol J 10(11):486–495

    PubMed  PubMed Central  Google Scholar 

  23. Cheng X, Hu Q, Zhou C et al (2015) The long-term efficacy of cryoballoon vs irrigated radiofrequency ablation for the treatment of atrial fibrillation: a meta-analysis. Int J Cardiol 181:297–302

    Article  Google Scholar 

  24. Metzner A, Rausch P, Lemes C et al (2014) The incidence of phrenic nerve injury during pulmonary vein isolation using the second-generation 28 mm cryoballoon. J Cardiovasc Electrophysiol 25(5):466–470

    Article  Google Scholar 

  25. Macle L, Weerasooriya R, Jais P et al (2003) Radiation exposure during radiofrequency catheter ablation for atrial fibrillation. Pacing Clin Electrophysiol 26(1P2):288–291

    Article  Google Scholar 

  26. Khaykin Y, Oosthuizen R, Zarnett L et al (2011) CARTO-guided vs. NavX-guided pulmonary vein antrum isolation and pulmonary vein antrum isolation performed without 3‑D mapping: effect of the 3‑D mapping system on procedure duration and fluoroscopy time. J Interv Card Electrophysiol 30(3):233–240

    Article  Google Scholar 

  27. Chambers CE, Fetterly KA, Holzer R et al (2011) Radiation safety program for the cardiac catheterization laboratory. Catheter Cardiovasc Interv 77(4):546–556

    Article  Google Scholar 

  28. Miller DL, Society for Interventional Radiology (2009) Interventional fluoroscopy: reducing radiation risks for patients and staff. J Vasc Interv Radiol 20(7):274

    Article  Google Scholar 

  29. Miller DL, Balter S, Noonan PT, Georgia JD (2002) Minimizing radiation-induced skin injury in interventional radiology procedures. Radiology 225(2):329–336

    Article  Google Scholar 

  30. Chida K, Saito H, Otani H et al (2006) Relationship between fluoroscopic time, dose-area product, body weight, and maximum radiation skin dose in cardiac interventional procedures. ajr Am J Roentgenol 186(3):774–778

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nabil Ali MD.

Ethics declarations

Conflict of interest

A. N. Ali, H.K.‑E. Ali, S.A.‑E.‑H. Khalid, and W.A. El-Khouly declare that they have no competing interests.

This study was approved by Ain Shams University ethical committee according to the ethical guidelines of the 1975 declaration of Helsinki as revised in 2008. Informed consent was obtained from all individual participants included in the study.

Additional information

Copyrights

All authors ensure their acceptance of transfer of copyright to the Herzschrittmachertherapie und Elektrophysiologie Journal upon the acceptance of the manuscript for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.N., Ali, H.KE., Khalid, S.AEH. et al. Radiation exposure in cryoballoon ablation compared to radiofrequency ablation with three-dimensional electroanatomic mapping in atrial fibrillation patients. Herzschr Elektrophys 32, 99–107 (2021). https://doi.org/10.1007/s00399-020-00738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-020-00738-z

Keywords

Schlüsselwörter

Navigation