Skip to main content
Log in

Sensing and detection in Medtronic implantable cardioverter defibrillators

Wahrnehmung und Detektion durch implantierbare Kardioverter-Defibrillatoren von Medtronic

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Abstract

Ensuring sensing and detection of ventricular tachycardia (VT) and ventricular fibrillation (VF) was a prerequisite for the clinical trials that established the survival benefit of implantable cardioverter defibrillators (ICDs). However, for decades, a high incidence of unnecessary shocks limited patients’ and physicians’ acceptance of ICD therapy. Oversensing, misclassification of supraventricular tachycardia (SVT) as VT, and self-terminating VT accounted for the vast majority of unnecessary shocks. Medtronic ICDs utilize sensitive baseline settings with minimal blanking periods to ensure accurate sensing of VF, VT, and SVT electrograms. Programmable algorithms reject oversensing caused by far-field R waves, T waves, and non-physiologic signals caused by lead failure. A robust hierarchy of SVT-VT discriminators minimize misclassification of SVT as VT. These features, combined with evidence-based programming, have reduced the 1‑year inappropriate shock rate to 1.5 % for dual-/triple-chamber ICDs and to 2.5 % for single-chamber ICDs.

Zusammenfassung

Die Wahrnehmung und Detektion von ventrikulären Tachykardien (VT) und Kammerflimmern (VF) sicherzustellen, war die Voraussetzung für klinische Studien, die den Überlebensvorteil durch implantierbare Kardioverter-Defibrillatoren (ICD) demonstrierten. Dennoch limitierte das häufige Auftreten unnötiger Schocktherapien für Jahrzehnte die Akzeptanz der ICD-Therapie bei Patienten und Ärzten. Ein Oversensing, die Fehlklassifizierung von supraventrikulären Tachykardien (SVT) als VT und nichtanhaltende VT sind die Ursache für die große Mehrzahl unnötiger Schocktherapien. ICD der Fa. Medtronic nutzen empfindliche Baseline-Einstellungen und minimierte Ausblendzeiten, um die korrekte Klassifikation eines Tachykardieelektrogramms zu VT, VF oder SVT zu ermöglichen. Programmierbare Algorithmen verhindern ein Oversensing durch ventrikuläre Fernfeldsignale, T‑Wellen und nichtphysiologische Signale aufgrund von Elektrodenfehlfunktionen. Eine robuste Hierarchie der VT/SVT-Diskriminatoren minimiert das Risiko der Fehlklassifizierung einer SVT als VT. Diese Eigenschaften reduzieren zusammen mit einer evidenzbasierten Programmierung die 1‑Jahres-Häufigkeit inadäquater Schocks auf 1,5 % für Zwei- und Dreikammer-ICD und auf 2,5 % für Einkammer-ICD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 18 (Continued)

Similar content being viewed by others

Notes

  1. When the median atrial cycle length is <15/16 (93.75 %) of the median ventricular cycle length, then A:V > 1:1.

  2. Modesum measure regularity. A histogram of the 18 most recent RR intervals is created. The sum of the two most populated bins is divided by 18 to compute modesum. Modesum >75 % is considered “regular”.

References

  1. Ruetz LL, Koehler JL, Brown ML, Jackson TE, Belk P, Swerdlow CD (2015) Sinus rhythm R‑wave amplitude as a predictor of ventricular fibrillation undersensing in patients with implantable cardioverter-defibrillator. Heart Rhythm 12(12):2411–2418

    Article  PubMed  Google Scholar 

  2. Ploux S, Swerdlow CD, Eschalier R, Monteil B, Ouali S, Haïssaguerre M, Bordachar P (2016) Diaphragmatic myopotential oversensing caused by change in Implantable cardioverter defibrillator sensing bandpass filter. Pacing Clin Electrophysiol 39(7). doi:10.1111/pace.12837

  3. Dekker LR, Schrama TA, Steinmetz FH, Tukkie R (2004) Undersensing of VF in a patient with optimal R wave sensing during sinus rhythm. Pacing Clin Electrophysiol 27(6 Pt 1):833–834

    Article  PubMed  Google Scholar 

  4. Michaud J, Horduna I, Dubuc M, Khairy P (2009) ICD-unresponsive ventricular arrhythmias. Heart Rhythm 6(12):1827–1829

    Article  PubMed  Google Scholar 

  5. van Heuverswyn FE, Timmers L, Stroobandt RX, Barold SS (2013) Undersensing by an ICD due to alternans of the ventricular electrogram. Ann Noninvasive Electrocardiol 18(1):84–89

    Article  PubMed  Google Scholar 

  6. Gillberg J, Olson W (eds) (2001) Dual-chamber sensing and detection for implantable cardioverter-defibrillators. Interventional electrophysiology, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  7. Olson W (1996) Safety margins for sensing and detection: Programming tradeoffs. In: Kroll M, Lehmann M (eds) Implantable Cardioverter Defibrillator Therapy: The Engineering-Clinical Interface. Kluwer Academic Publishers, Norwell, pp 389–420

    Chapter  Google Scholar 

  8. Anderson MH, Murgatroyd FD, Hnatkova K, Xie B, Jones S, Rowland E, Ward DE, Camm AJ, Malik M (1997) Performance of basic ventricular tachycardia detection algorithms in implantable cardioverter defibrillators: implications for device programming. Pacing Clin Electrophysiol 20(12 Pt 1):2975–2983

    Article  CAS  PubMed  Google Scholar 

  9. Murgatroyd F, Anderson M, Hnatkova K, Xie B, Malik M, Ward D, Camm A (1993) Comparison of misdiagnosis of atrial fibrillation as ventricular tachycardia by algorithms employed in current implantable cardioverter-defibrillators. Circulation 88:1–353

    Google Scholar 

  10. Mansour F, Khairy P (2014) ICD follow-up and troubleshooting. Card Pacing ICDs 6:413–452. doi:10.1002/9781118459553.ch10

    Article  Google Scholar 

  11. Klein GJ, Gillberg JM, Tang A, Inbar S, Sharma A, Unterberg-Buchwald C, Dorian P, Moore H, Duru F, Rooney E, Becker D, Schaaf K, Benditt D, for the Worldwide Wave I (2006) Improving SVT discrimination in single-chamber ICDs: a new electrogram morphology-based algorithm. J Cardiovasc Electrophysiol 17(12):1310–1319

    Article  PubMed  Google Scholar 

  12. Swerdlow CD, Chen PS, Kass RM, Allard JR, Peter CT (1994) Discrimination of ventricular tachycardia from sinus tachycardia and atrial fibrillation in a tiered-therapy cardioverter-defibrillator. J Am Coll Cardiol 23(6):1342–1355

    Article  CAS  PubMed  Google Scholar 

  13. Swerdlow CD, Ahern T, Chen PS, Hwang C, Gang E, Mandel W, Kass RM, Peter CT (1994) Underdetection of ventricular tachycardia by algorithms to enhance specificity in a tiered-therapy cardioverter-defibrillator. J Am Coll Cardiol 24(2):416–424

    Article  CAS  PubMed  Google Scholar 

  14. Swerdlow CD, Brown ML, Lurie K, Zhang J, Wood NM, Olson WH, Gillberg JM (2002) Discrimination of ventricular tachycardia from supraventricular tachycardia by a downloaded wavelet-transform morphology algorithm: a paradigm for development of implantable cardioverter defibrillator detection algorithms. J Cardiovasc Electrophysiol 13(5):432–441

    Article  PubMed  Google Scholar 

  15. Stadler RW, Gunderson BD, Gillberg JM (2003) An adaptive interval-based algorithm for withholding ICD therapy during sinus tachycardia. Pacing Clin Electrophysiol 26(5):1189–1201

    Article  PubMed  Google Scholar 

  16. Wollmann CG, Lawo T, Kuhlkamp V, Becker R, Garutti C, Jackson T, Brown ML, Mayr H (2014) Implantable defibrillators with enhanced detection algorithms: detection performance and safety results from the painfree SST study. Pacing Clin Electrophysiol 37(9):1198–1209

    Article  PubMed  Google Scholar 

  17. Swerdlow CD, Kalahasty G, Ellenbogen KA (2016) Implantable cardiac defibrillator lead failure and management. J Am Coll Cardiol 67(11):1358–1368

    Article  PubMed  Google Scholar 

  18. Ellenbogen KA, Gunderson BD, Stromberg KD, Swerdlow CD (2013) Performance of lead integrity alert to assist in the clinical diagnosis of implantable cardioverter defibrillator lead failures: analysis of different implantable cardioverter defibrillator leads. Circ Arrhythm Electrophysiol 6(6):1169–1177

    Article  PubMed  Google Scholar 

  19. Swerdlow CD, Sachanandani H, Gunderson BD, Ousdigian KT, Hjelle M, Ellenbogen KA (2011) Preventing overdiagnosis of implantable cardioverter-defibrillator lead fractures using device diagnostics. J Am Coll Cardiol 57(23):2330–2339

    Article  PubMed  Google Scholar 

  20. Gunderson BD, Gillberg JM, Wood MA, Vijayaraman P, Shepard RK, Ellenbogen KA (2006) Development and testing of an algorithm to detect implantable cardioverter-defibrillator lead failure. Heart Rhythm 3(2):155–162

    Article  PubMed  Google Scholar 

  21. Ellenbogen K, Auricchio A, Schloss E, Kurita T, Meijer A, Sterns L, Gerritse B, Brown M (2015) Painfree SST trial: lead noise algorithm performance. Heart Rhythm 12(5): S245

  22. Iwasawa J, Miyazaki S, Masuda R, Ichihara N, Takagi T, Kuroi A, Komatsu Y, Nakamura H, Taniguchi H, Hachiya H, Iesaka Y (2014) Discrimination algorithm of an implantable cardioverter defibrillator in a case with a lead dislodgement. Heart Rhythm 11:491–492

    Google Scholar 

  23. Koneru JN, Kaszala K, Bordachar P, Shehata M, Swerdlow C, Ellenbogen KA (2015) Spectrum of issues detected by an ICD diagnostic alert that utilizes far-field electrograms: clinical implications. Heart Rhythm 12(5):957–967

    Article  PubMed  Google Scholar 

  24. Swerdlow CD, Gunderson BD, Ousdigian KT, Abeyratne A, Stadler RW, Gillberg JM, Patel AS, Ellenbogen KA (2008) Downloadable algorithm to reduce inappropriate shocks caused by fractures of implantable cardioverter-defibrillator leads. Circulation 118(21):2122–2129

    Article  PubMed  Google Scholar 

  25. Swerdlow CD, Gunderson BD, Ousdigian KT, Abeyratne A, Sachanandani H, Ellenbogen KA (2010) Downloadable software algorithm reduces inappropriate shocks caused by implantable cardioverter-defibrillator lead fractures: a prospective study. Circulation 122(15):1449–1455

    Article  PubMed  Google Scholar 

  26. Verlato R, Facchin D, Catanzariti D, Molon G, Zanotto G, Morani G, Brieda M, Zanon F, Delise P, Leoni L, Comisso J, Campo C (2013) Clinical outcomes in patients with implantable cardioverter defibrillators and Sprint Fidelis leads. Heart 99(11):799–804

    Article  PubMed  Google Scholar 

  27. Birnie DH, Parkash R, Exner DV, Essebag V, Healey JS, Verma A, Coutu B, Kus T, Mangat I, Ayala-Paredes F, Nery P, Wells G, Krahn AD (2012) Clinical predictors of Fidelis lead failure: report from the Canadian Heart Rhythm Society Device Committee. Circulation 125(10):1217–1225

    Article  PubMed  Google Scholar 

  28. Blanck Z, Axtell K, Brodhagen K, O’Hearn L, Albelo T, Ceretto C, Dhala A, Sra J, Akhtar M (2011) Inappropriate shocks in patients with Fidelis(R) lead fractures: impact of remote monitoring and the lead integrity algorithm. J Cardiovasc Electrophysiol 22(10):1107–1114

    Article  PubMed  Google Scholar 

  29. Steinberg C, Padfield GJ, Hahn E, Flavelle S, McIlroy IC, van Bremen O, Yeung-Lai-Wah JA, Kerr CR, Deyell MW, Tung SK, Andrade JG, Bennett MT, Bashir JG, Krahn AD, Chakrabarti S (2015) Lead Integrity Alert Is Useful for Assessment of Performance of Biotronik Linox Leads. J Cardiovasc Electrophysiol 26(12):1340–1345

    Article  PubMed  Google Scholar 

  30. Auricchio A, Schloss EJ, Kurita T, Meijer A, Gerritse B, Zweibel S, AlSmadi FM, Leng CT, Sterns LD, PainFree SSTI (2015) Low inappropriate shock rates in patients with single- and dual/triple-chamber implantable cardioverter-defibrillators using a novel suite of detection algorithms: PainFree SST trial primary results. Heart Rhythm 12(5):926–936

    Article  PubMed  Google Scholar 

  31. Wathen MS, DeGroot PJ, Sweeney MO, Stark AJ, Otterness MF, Adkisson WO, Canby RC, Khalighi K, Machado C, Rubenstein DS, Volosin KJ (2004) Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients with implantable cardioverter-defibrillators: Pacing Fast Ventricular Tachycardia Reduces Shock Therapies (PainFREE Rx II) trial results. Circulation 110(17):2591–2596

    Article  PubMed  Google Scholar 

  32. Wilkoff BL, Williamson BD, Stern RS, Moore SL, Lu F, Lee SW, Birgersdotter-Green UM, Wathen MS, van Gelder IC, Heubner BM, Brown ML, Holloman KK, Investigators PS (2008) Strategic programming of detection and therapy parameters in implantable cardioverter-defibrillators reduces shocks in primary prevention patients: results from the PREPARE (Primary Prevention Parameters Evaluation) study. J Am Coll Cardiol 52(7):541–550

    Article  PubMed  Google Scholar 

  33. Wilkoff BL, Ousdigian KT, Sterns LD, Wang ZJ, Wilson RD, Morgan JM, Investigators ET (2006) A comparison of empiric to physician-tailored programming of implantable cardioverter-defibrillators: results from the prospective randomized multicenter EMPIRIC trial. J Am Coll Cardiol 48(2):330–339

    Article  PubMed  Google Scholar 

  34. Gasparini M, Menozzi C, Proclemer A, Landolina M, Iacopino S, Carboni A, Lombardo E, Regoli F, Biffi M, Burrone V, Denaro A, Boriani G (2009) A simplified biventricular defibrillator with fixed long detection intervals reduces implantable cardioverter defibrillator (ICD) interventions and heart failure hospitalizations in patients with non-ischaemic cardiomyopathy implanted for primary prevention: the RELEVANT [Role of long dEtection window programming in patients with LEft VentriculAr dysfunction, Non-ischemic eTiology in primary prevention treated with a biventricular ICD] study. Eur Heart J 30(22):2758–2767

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gasparini M, Proclemer A, Klersy C, Kloppe A, Lunati M, Ferrer JB, Hersi A, Gulaj M, Wijfels MC, Santi E, Manotta L, Arenal A (2013) Effect of long-detection interval vs standard-detection interval for implantable cardioverter-defibrillators on antitachycardia pacing and shock delivery: the ADVANCE III randomized clinical trial. JAMA 309(18):1903–1911

    Article  CAS  PubMed  Google Scholar 

  36. Wilkoff BL, Fauchier L, Stiles MK, Morillo CA, Al-Khatib SM, Almendral J, Aguinaga L, Berger RD, Cuesta A, Daubert JP, Dubner S, Ellenbogen KA, Mark Estes NA 3rd, Fenelon G, Garcia FC, Gasparini M, Haines DE, Healey JS, Hurtwitz JL, Keegan R, Kolb C, Kuck KH, Marinskis G, Martinelli M, McGuire M, Molina LG, Okumura K, Proclemer A, Russo AM, Singh JP, Swerdlow CD, Teo WS, Uribe W, Viskin S, Wang CC, Zhang S (2016) 2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Heart Rhythm 13(2):50–86

    Article  Google Scholar 

  37. Ellenbogen KA, Wilkoff BL, Kay GN et al (2016) Clinical cardiac pacing, defibrillation and resynchronization therapy, 5th edn. Elsevier, Philadelphia

    Google Scholar 

  38. Swerdlow CD, Asirvatham SJ, Ellenbogen KA, Friedman PA (2014) Troubleshooting implanted cardioverter defibrillator sensing problems I. circulation Arrhythmia Electrophysiol 7(6):1237–1261

    Article  Google Scholar 

  39. Schoels W, Steinhaus D, Johnson WB, O’Hara G, Schwab JO, Jenniskens I, DeGroot PJ, Tang F, Helmling E, on behalf of the EnTrust Clinical Study Investigators (2007) Optimizing implantable cardioverter-defibrillator treatment of rapid ventricular tachycardia: Antitachycardia pacing therapy during charging. Heart Rhythm 4:879–885

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Brown PhD.

Ethics declarations

Conflict of interest

Mark L. Brown is an employee of Medtronic. Charles D. Swerdow is a consultant to Medtronic and has received honoraria from Boston Scientific.

This article does not contain any studies with human participants or animals performed by any of the authors.

Appendix

Appendix

Table 1 Medtronic programming recommendations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, M.L., Swerdlow, C.D. Sensing and detection in Medtronic implantable cardioverter defibrillators. Herzschr Elektrophys 27, 193–212 (2016). https://doi.org/10.1007/s00399-016-0450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-016-0450-6

Keywords

Schlüsselwörter

Navigation