Skip to main content

Advertisement

Log in

Magnetische Navigation in der elektrophysiologischen Diagnostik und Therapie

Magnetic navigation in invasive electrophysiological diagnostic and therapy

  • BEITRAG ZUM THEMENSCHWERPUNKT
  • Published:
Herzschrittmachertherapie & Elektrophysiologie Aims and scope Submit manuscript

Abstract

Electrophysiological stimulation and ablation is currently performed with manually deflectable catheters of different lengths and curves. Disadvantages of conventional therapy are catheter stiffness, limited local stability, risk of dislocation or perforation, and reduced tissue contact in regions with difficult access. Fluoroscopy to control catheter movement and position may require substantial radiation times.

Magnetic navigation was first applied for right heart catherization in congenital heart disease in 1991; the first electrophysiological application took place in 2003. Today, an ablation electrode with small magnets is aligned in the patient’s heart by two external magnets positioned at both sides of the thorax. Antegrade and retrograde movement of the distal catheter tip are performed via an external device on the patient's thigh. Three-dimensional MRI scans acquired before intervention can be merged with electroanatomical reconstruction, leading to further reductions of radiation burden. During treatment of supraventricular tachyarrhythmias high local precision of magnetically guided catheters, good local stability, and a substantially reduced radiation time have been reported. First applications in ventricular tachyarrhythmias and complex congenital cardiac defects indicate a comparable effect. Limitations of this therapy are the application in left atrial procedures (open irrigated ablation catheters not yet available), difficult transaortic retrograde approach (high lead flexibility), and the considerable costs.

Magnet-assisted navigation is feasible during percutaneous coronary interventions of tortuous coronary arteries and in positioning guidewires in coronary sinus side branches for resynchronisation therapy. Future applications will be complex left atrial procedures, magnetically guided cardiac stem cell therapy, local drug application, and extracardiac vessel therapy.

Zusammenfassung

In der elektrophysiologischen Diagnostik und Therapie werden Stimulations- und/oder Ablationskatheter mit unterschiedlichen Vorkrümmungen und Längen durch den Arzt mittels integrierter Zugseilsysteme über einen Handgriff bewegt. Nachteile dieser Technologie sind erhöhte Kathetersteifigkeit, eingeschränkte Stabilität im kontrahierenden Herz mit Dislokationsgefahr, selten Perforationsgefahr und ein teilweise schlechter Gewebekontakt in anatomisch ungünstig zu erreichenden Regionen des Herzens. Die erforderliche Röntgendurchleuchtung zur Kontrolle der Katheterlage führt zu einer relevanten Strahlenbelastung für Patient und Untersucher.

Die magnetische Navigation wurde erstmals 1991 bei einem Neugeborenen mit einem komplexen kongenitalen Vitium in der invasiven Diagnostik eingesetzt und 2003 zum ersten Mal während der elektrophysiologischen Untersuchung und Ablationstherapie angewandt. Heutzutage wird durch zwei externe, lateral des Thorax positionierte Magnete ein Ablationskatheter mit magnetischer Spitze im Herzen des Patienten ausgerichtet und über eine externe Führungsschiene vor- und zurückbewegt. Durch die zusätzliche Kombination mit dreidimensionaler präinterventioneller MRT-Bildgebung in Verbindung mit elektroanatomischer Rekonstruktion können die Durchleuchtungszeiten weiter reduziert werden. Bei der Behandlung von supraventrikulären Tachykardien zeigt sich eine hohe Bewegungspräzision und Stabilität mit einer deutlichen Reduktion der Strahlenbelastung. Erste Anwendungen in der Radiofrequenzablation ventrikulärer Tachykardien deuten auf eine ähnliche Effektivität hin, ebenso erste Applikationen bei komplexen kongenitalen Vitien. Limitationen stellen derzeit der eingeschränkte Einsatz bei linksatrialen Prozeduren infolge nicht verfügbarer offen gekühlter Kathetersysteme, ein aufgrund der erhöhten Katheterflexibilität erschwerter retrograd transaortaler Zugangsweg und letzlich der erhebliche Kostenaufwand dar. Neben dem Einsatz in der interventionellen Therapie komplexer Koronarstenosen und der Implantation linksventrikulärer Elektroden zur Resynchronisationstherapie sind künftige Anwendungsgebiete komplexe linksatriale Prozeduren, die Stammzelltherapie und Anwendung in anderen extrakardialen Gefäßregionen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Aryana A, d'Avila A, Heist EK, Mela T, Singh JP, Ruskin JN, Reddy VY (2007) Remote magnetic navigation to guide endocardial and epicardial catheter mapping of scar-related ventricular tachycardia. Circulation 115:1191–1200

    PubMed  Google Scholar 

  2. Atmakuri SR, Lev EI, Alviar C, Ibarra E, Raizner AE, Solomon SL, Kleiman NS (2006) Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions. J Am Coll Cardiol 47:515–521

    Article  PubMed  Google Scholar 

  3. Burkhardt JD, Saliba WI, Schweikert RA, Cummings J, Natale A (2006) Remote magnetic navigation to map and ablate left coronary cusp ventricular tachycardia. J Cardiovasc Electrophysiol 17:1142–1144

    Article  PubMed  Google Scholar 

  4. Chun JK, Ernst S, Matthews S, Schmidt B, Bansch D, Boczor S, Ujeyl A, Antz M, Ouyang F, Kuck KH (2007) Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory. Eur Heart J 28:190–195

    Article  PubMed  Google Scholar 

  5. Davis DR, Tang AS, Birnie DH, Gollob MH (2006) Successful ablation of a concealed parahisian accessory pathway using a remote magnetic navigation system following failure by conventional methods. J Interv Card Electrophysiol 16:149–151

    Article  PubMed  Google Scholar 

  6. Ernst S, Ouyang F, Linder C, Hertting K, Stahl F, Chun J, Hachiya H, Bansch D, Antz M, Kuck KH (2004) Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation. Circulation 109:1472–1475

    Article  PubMed  Google Scholar 

  7. Ernst S, Ouyang F, Linder C, Hertting K, Stahl F, Chun J, Hachiya H, Krumsdorf U, Antz M, Kuck KH (2004) Modulation of the slow pathway in the presence of a persistent left superior caval vein using the novel magnetic navigation system Niobe. Europace 6:10–14

    Article  PubMed  Google Scholar 

  8. Ernst S, Hachiya H, Chun JK, Ouyang F (2005) Remote catheter ablation of parahisian accessory pathways using a novel magnetic navigation system – a report of two cases. J Cardiovasc Electrophysiol 16:659–662

    Article  PubMed  Google Scholar 

  9. Ernst S, Chun JK, Ujeyl A, Ouyang F, Kuck KH (2007) “Sequential” mapping mimicking “simultaneous” mapping using magnetic navigation during catheter ablation of supraventricular tachycardia. Results of the Single DX Study. J Cardiovasc Electrophysiol 18(Suppl 1):S11–17

    Article  Google Scholar 

  10. Faddis MN, Blume W, Finney J, Hall A, Rauch J, Sell J, Bae KT, Talcott M, Lindsay B (2002) Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation 106:2980–2985

    Article  PubMed  Google Scholar 

  11. Faddis MN, Chen J, Osborn J, Talcott M, Cain ME, Lindsay BD (2003) Magnetic guidance system for cardiac electrophysiology: a prospective trial of safety and efficacy in humans. J Am Coll Cardiol 42:1952–1958

    Article  PubMed  Google Scholar 

  12. Kolb C, Luik A, Hessling G, Zrenner B (2007) Magnetic catheter navigation system interference with a dualchamber pacemaker. J Cardiovasc Electrophysiol 18:1–2

    Article  Google Scholar 

  13. Luik A, Estner H, Pflaumer A, Reents T, Wu J, Ücer E, Hessling G, Deisenhofer I, Zrenner B (2007) Automatic intracardiac mapping of the left atrium using the Niobe System. A new dimension of catheter navigation. Heart Rhythm 4:S343

    Google Scholar 

  14. Pappone C, Vicedomini G, Manguso F, Gugliotta F, Mazzone P, Gulletta S, Sora N, Sala S, Marzi A, Augello G, Livolsi L, Santagostino A, Santinelli V (2006) Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 47:1390–1400

    Article  PubMed  Google Scholar 

  15. Pflaumer A, Hessling G, Luik A, Wu J, Zrenner B (2007) Remote magnetic catheter mapping and ablation of permanent junctional reciprocating tachycardia in a seven-year-old child. J Cardiovasc Electrophysiol 18:1–4

    Article  Google Scholar 

  16. Ram W, Meyer H (1991) Heart catheterization in a neonate by interacting magnetic fields: a new and simple method of catheter guidance. Cathet Cardiovasc Diagn 22:317–319

    Article  PubMed  CAS  Google Scholar 

  17. Ray IB, Dukkipati S, Houghtaling C, McPherson CD, Kastelein N, Ruskin JN, Reddy VY (2007) Initial experience with a novel remote-guided magnetic catheter navigation system for left ventricular scar mapping and ablation in a porcine model of healed myocardial infarction. J Cardiovasc Electrophysiol 18:520–525

    Article  PubMed  Google Scholar 

  18. Rivero-Ayerza M, Thornton AS, Theuns DA, Scholten MF, Mekel JM, Res J, Jordaens LJ (2006) Left ventricular lead placement within a coronary sinus side branch using remote magnetic navigation of a guidewire: a feasibility study. J Cardiovasc Electrophysiol 17:128–133

    Article  PubMed  Google Scholar 

  19. Rivero-Ayerza M, Jessurun ER, van Belle Y, Theuns DA, Jordaens L (2007) Magnetically guided left ventricular lead implantation based on a virtual 3-D reconstructed image of the coronary sinus. Heart Rhythm 4:S21

    Google Scholar 

  20. Shepard RK, Ellenbogen KA (2007) Challenges and solutions for difficult implantations of CRT devices. The Role of New Technology and Techniques. J Cardiovasc Electrophysiol 18(Suppl 1):S21–25

    Article  Google Scholar 

  21. Thornton A, Rivero-Ayerza M, Jordaens L (2007) Preliminary data showing feasibility of retrograde transaortic left atrial and pulmonary vein access using magnetic navigation. Heart Rhythm 4:S309

    Google Scholar 

  22. Thornton AS, Res J, Mekel JM, Jordaens LJ (2006) Use of advanced mapping and remote magnetic navigation to ablate left ventricular fascicular tachycardia. Pacing Clin Electrophysiol 29:685–688

    Article  PubMed  Google Scholar 

  23. Thornton AS, Jordaens L (2007) A left-sided accessory pathway revisited with remote retrograde magnetic navigation. Pacing Clin Electrophysiol 30:573–576

    Article  PubMed  Google Scholar 

  24. Thornton AS, Rivero-Ayerza M, Knops P, Jordaens LJ (2007) Magnetic navigation in left-sided AV reentrant tachycardias: preliminary results of a retrograde approach. J Cardiovasc Electrophysiol 18:467–472

    Article  PubMed  Google Scholar 

  25. Tsuchida K, Garcia-Garcia HM, van der Giessen WJ, McFadden EP, van der Ent M, Sianos G, Meulenbrug H, Ong AT, Serruys PW (2006) Guidewire navigation in coronary artery stenoses using a novel magnetic navigation system: first clinical experience. Catheter Cardiovasc Interv 67:356–363

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schimpf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schimpf, R., Reents, T., Hessling, G. et al. Magnetische Navigation in der elektrophysiologischen Diagnostik und Therapie. Herzschr. Elektrophys. 18, 157–165 (2007). https://doi.org/10.1007/s00399-007-0575-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-007-0575-8

Key words

Schlüsselwörter

Navigation