Skip to main content
Log in

Spinales und paraspinales Kollateralnetzwerk

Rückenmarkperfusion und Neuroprotektion

Spinal and paraspinal collateral network

Spinal cord perfusion and neuroprotection

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Komplexe Operationen an der thorakalen und thorakoabdominalen Aorta gehören zu den technisch anspruchsvollsten Eingriffen in der Herzchirurgie und sind nach wie vor mit einer erhöhten Morbidität und Letalität assoziiert. Die perioperative Paraplegie aufgrund ischämischer Rückenmarkschädigung stellt hierbei eine der für den Patienten schicksalhaftesten Komplikationen dar. Trotz der Entwicklung zahlreicher neuroprotektiver Strategien hat die Inzidenz der ischämischen Rückenmarkschädigung bei offenen und endovaskulären Operationen an der thorakalen und thorakoabdominalen Aorta jedoch nur geringfügig abgenommen. Zur erfolgreichen Entwicklung und klinischen Anwendung von effektiven neuroprotektiven Strategien bei aortenchirurgischen Eingriffen ist zwangsläufig ein dezidiertes Verständnis der Anatomie der rückenmarkversorgenden Gefäße erforderlich. Neu gewonnene experimentelle und klinische Erkenntnisse zur Rückenmarkprotektion erlaubten die Entwicklung der Hypothese des paraspinalen und spinalen Kollateralnetzwerks („collateral network“, CN), die die klassische Theorie der Adamkiewicz-Arterie zunehmend infrage stellt sowie gleichzeitig neue Therapieansätze und Strategien zur Rückenmarkprotektion ermöglichen könnte. Die vorliegende Arbeit gibt einen Überblick über die neuesten klinischen und experimentellen Erkenntnisse hinsichtlich des arteriellen paraspinalen und spinalen CN sowie über die derzeit angewendeten neuroprotektiven Strategien zur Verhinderung von Paraplegien nach Operationen an der deszendierenden thorakalen Aorta (DTA) und thorakoabdominalen Aorta (TAA).

Abstract

Extensive thoracic and thoracoabdominal aortic repair remains one of the most challenging operations in cardiovascular surgery and is still associated with increased morbidity and mortality. Perioperative paraplegia due to ischemic spinal cord injury remains one of most dreaded complications in aortic surgery. Despite the clinical implementation of several neuroprotective strategies the incidence of ischemic spinal cord injury during thoracic and thoracoabdominal aortic repair remains high. However, definitive knowledge of the spinal cord vasculature, the feeding arterial branches and the underlying physiology is imperative to allow successful development of effective neuroprotective strategies during aortic surgery. Recent experimental and clinical data on spinal cord protection has resulted in the development of the collateral network concept that currently challenges the classical theory on spinal cord blood supply by the Adamkiewicz artery. However, this new theory of an extensive intraspinal and paraspinal collateral network may allow the development of new spinal cord protective strategies. This article discusses recent experimental and clinical studies regarding the collateral network concept of arterial spinal cord blood supply and gives an overview on the neuroprotective strategies currently used during aortic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Cooley DA, De Bakey ME (1952) Surgical considerations of intrathoracic aneurysms of the aorta and great vessels. Ann Surg 135:660–680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Crawford ES, Walker HS 3rd, Saleh SA, Normann NA(1981) Graft replacement of aneurysm in descending thoracic aorta: results without bypass or shunting. Surgery 89:73–85

    PubMed  CAS  Google Scholar 

  3. Svensson LG, Crawford ES, Hess KR et al (1993) Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg 17:357–368

    Article  PubMed  CAS  Google Scholar 

  4. Golden MA, Donaldson MC, Whittemore AD, Mannick JA (1991) Evolving experience with thoracoabdominal aortic aneurysm repair at a single institution. J Vasc Surg 13:792–796

    Article  PubMed  CAS  Google Scholar 

  5. Grabenwoger M, Fleck T, Czerny M et al (2003) Endovascular stent graft placement in patients with acute thoracic aortic syndromes. Eur J Cardiothorac Surg 23:788–793

    Article  PubMed  Google Scholar 

  6. Cambria RP, Crawford RS, Cho JS et al (2009) A multicenter clinical trial of endovascular stent graft repair of acute catastrophes of the descending thoracic aorta. J Vasc Surg 50:1255–1264, e1251–e1254

    Article  PubMed  Google Scholar 

  7. Patel HJ, Williams DM, Upchurch GR Jr et al (2009) A comparative analysis of open and endovascular repair for the ruptured descending thoracic aorta. J Vasc Surg 50:1265–1270

    Article  PubMed  Google Scholar 

  8. Adamkiewicz A (1882) Die Blutgefaesse des menschlichen Rueckenmarks. S B Heidelberg Akad Wiss Theil IþII:101–130

    Google Scholar 

  9. Lazorthes G, Gouaze A, Zadeh JO et al (1971) Arterial vascularization of the spinal cord. Recent studies of the anastomotic substitution pathways. J Neurosurg 35:253–262

    Article  PubMed  CAS  Google Scholar 

  10. Lazorthes G, Poulhes J, Bastide G et al (1958) Arterial vascularization of the spine; anatomic research and applications in pathology of the spinal cord and aorta. Neurochirurgie 4:3–19

    PubMed  CAS  Google Scholar 

  11. Lazorthes G, Poulhes J, Bastide G et al (1957) Research on the arterial vascularization of the medulla; applications to medullary pathology. Bull Acad Natl Med 141:464–477

    PubMed  CAS  Google Scholar 

  12. Etz CD, Halstead JC, Spielvogel D et al (2006) Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg 82:1670–1677

    Article  PubMed  Google Scholar 

  13. Galla JD, Ergin MA, Sadeghi AM et al (1994) A new technique using somatosensory evoked potential guidance during descending and thoracoabdominal aortic repairs. J Card Surg 9:662–672

    Article  PubMed  CAS  Google Scholar 

  14. Furukawa K, Kamohara K, Nojiri J et al (2010) Operative strategy for descending and thoracoabdominal aneurysm repair with preoperative demonstration of the Adamkiewicz artery. Ann Thorac Surg 90:1840–1846

    Article  PubMed  Google Scholar 

  15. Acher CW, Wynn MM, Hoch JR et al (1994) Combined use of cerebral spinal fluid drainage and naloxone reduces the risk of paraplegia in thoracoabdominal aneurysm repair. J Vasc Surg 19:236–246

    Article  PubMed  CAS  Google Scholar 

  16. Griepp RB, Ergin MA, Galla JD et al (1996) Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg 112:1202–1213

    Article  PubMed  CAS  Google Scholar 

  17. Coselli JS, LeMaire SA, Conklin LD et al (2002) Morbidity and mortality after extent II thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 73:1107–1115

    Article  PubMed  Google Scholar 

  18. Czerny M, Eggebrecht H, Sodeck G et al (2012) Mechanisms of symptomatic spinal cord ischemia after TEVAR: insights from the European Registry of Endovascular Aortic Repair Complications (EuREC). J Endovasc Ther 19:37–43

    Article  PubMed  Google Scholar 

  19. Hinchliffe RJ, Ivancev K (2008) Endovascular aneurysm repair: current and future status. Cardiovasc Intervent Radiol 31:451–459

    Article  PubMed  CAS  Google Scholar 

  20. Luehr M, Bachet J, Mohr FW, Etz CD (2013) Modern temperature management in aortic arch surgery: the dilemma of moderate hypothermia. Eur J Cardiothorac Surg. DOI 10.1093/ejcts/ezt154

  21. Della Corte A, Scardone M, Romano G et al (2006) Aortic arch surgery: thoracoabdominal perfusion during antegrade cerebral perfusion may reduce postoperative morbidity. Ann Thorac Surg 81:1358–1364

    Article  Google Scholar 

  22. Estrera AL, Miller CC 3rd, Chen EP et al (2005) Descending thoracic aortic aneurysm repair: 12-year experience using distal aortic perfusion and cerebrospinal fluid drainage. Ann Thorac Surg 80:1290–1296

    Article  PubMed  Google Scholar 

  23. Meylaerts SA, Jacobs MJ, Iterson V van et al (1999) Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg 230:742–749

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Weigang E, Hartert M, Siegenthaler MP et al (2006) Perioperative management to improve neurologic outcome in thoracic or thoracoabdominal aortic stent-grafting. Ann Thorac Surg 82:1679–1687

    Article  PubMed  Google Scholar 

  25. Estrera AL, Sheinbaum R, Miller CC 3rd et al (2010) Neuromonitor-guided repair of thoracoabdominal aortic aneurysms. J Thorac Cardiovasc Surg 140:S131–S135

    Article  PubMed  Google Scholar 

  26. Coselli JS, LeMaire SA, Koksoy C et al (2002) Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg 35:631–639

    Article  PubMed  Google Scholar 

  27. Fedorow CA, Moon MC, Mutch WA, Grocott HP (2010) Lumbar cerebrospinal fluid drainage for thoracoabdominal aortic surgery: rationale and practical considerations for management. Anesth Analg 111:46–58

    PubMed  Google Scholar 

  28. Etz CD, Luehr M, Kari FA et al (2008) Paraplegia after extensive thoracic and thoracoabdominal aortic aneurysm repair: does critical spinal cord ischemia occur postoperatively? J Thorac Cardiovasc Surg 135:324–330

    Article  PubMed  Google Scholar 

  29. Etz CD, Zoli S, Mueller CS et al (2010) Staged repair significantly reduces paraplegia rate after extensive thoracoabdominal aortic aneurysm repair. J Thorac Cardiovasc Surg 139:1464–1472

    Article  PubMed  Google Scholar 

  30. Griepp RB, Griepp EB (2007) Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg 83:S865–S869

    Article  PubMed  Google Scholar 

  31. Jacobs MJ, Meylaerts SA, Haan P de et al (2000) Assessment of spinal cord ischemia by means of evoked potential monitoring during thoracoabdominal aortic surgery. Semin Vasc Surg 13:299–307

    PubMed  CAS  Google Scholar 

  32. Griepp RB, Ergin MA, Galla JD et al (1998) Minimizing spinal cord injury during repair of descending thoracic and thoracoabdominal aneurysms: the Mount Sinai approach. Semin Thorac Cardiovasc Surg 10:25–28

    PubMed  CAS  Google Scholar 

  33. Pokela R, Juvonen T, Satta J et al (1995) Outcome of thoracoabdominal aortic aneurysm surgery. Analysis of 27 consecutive cases. Ann Chir Gynaecol 84:18–23

    PubMed  CAS  Google Scholar 

  34. Svensson LG, Hess KR, Coselli JS, Safi HJ (1994) Influence of segmental arteries, extent, and atriofemoral bypass on postoperative paraplegia after thoracoabdominal aortic operations. J Vasc Surg 20:255–262

    Article  PubMed  CAS  Google Scholar 

  35. Acher CW, Wynn MM, Mell MW et al (2008) A quantitative assessment of the impact of intercostal artery reimplantation on paralysis risk in thoracoabdominal aortic aneurysm repair. Ann Surg 248:529–540

    PubMed  Google Scholar 

  36. Safi HJ, Miller CC 3rd, Carr C et al (1998) Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J Vasc Surg 27:58–66

    Article  PubMed  CAS  Google Scholar 

  37. Etz CD, Kari FA, Mueller CS et al (2011) The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg 141:1020–1028

    Article  PubMed  PubMed Central  Google Scholar 

  38. Etz CD, Kari FA, Mueller CS et al (2011) The collateral network concept: remodeling of the arterial collateral network after experimental segmental artery sacrifice. J Thorac Cardiovasc Surg 141:1029–1036

    Article  PubMed  PubMed Central  Google Scholar 

  39. Etz CD, Homann TM, Plestis KA et al (2007) Spinal cord perfusion after extensive segmental artery sacrifice: can paraplegia be prevented? Eur J Cardiothorac Surg 31:643–648

    Article  PubMed  Google Scholar 

  40. Etz CD, Homann TM, Luehr M et al (2008) Spinal cord blood flow and ischemic injury after experimental sacrifice of thoracic and abdominal segmental arteries. Eur J Cardiothorac Surg 33:1030–1038

    Article  PubMed  PubMed Central  Google Scholar 

  41. Etz CD, Di Luozzo G, Zoli S et al (2009) Direct spinal cord perfusion pressure monitoring in extensive distal aortic aneurysm repair. Ann Thorac Surg 87:1764–1773

    Article  PubMed  Google Scholar 

  42. Zoli S, Etz CD, Roder F et al (2010) Experimental two-stage simulated repair of extensive thoracoabdominal aneurysms reduces paraplegia risk. Ann Thorac Surg 90:722–729

    Article  PubMed  Google Scholar 

  43. Etz CD, von Aspern K, Gudehus S et al (2013) Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg. DOI: 10.1016/j.ejvs.2013.08.018

Download references

- Einhaltung der ethischen Richtlinien

Interessenkonflikt. M. Lühr, F.-W. Mohr und C.D. Etz geben an, dass kein Interessenkonflikt besteht. Der korrespondierende Autor bestätigt, dass alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren eingehalten wurden und die notwendigen Zustimmungen der zuständigen Behörden vorliegen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.D. Etz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lühr, M., Mohr, FW. & Etz, C. Spinales und paraspinales Kollateralnetzwerk. Z Herz- Thorax- Gefäßchir 27, 424–433 (2013). https://doi.org/10.1007/s00398-012-0987-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-012-0987-6

Schlüsselwörter

Keywords

Navigation