Skip to main content
Log in

On fitting data for parameter estimates: residual weighting and data representation

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We describe a fundamental problem in fitting rheological data to infer parameters and thus structural information about a material. The results may depend greatly on subjective choices in the fitting method making such inferences non-unique and therefore highly uncertain or wrong. We study experimental data and demonstrate that the most commonly used fitting scheme for oscillatory linear viscoelastic data is deceptively wrong for the purpose of inference, i.e., viscoelastic moduli (G′,G″) weighted by the experimental data. Our results establish best practices for fitting rheological data, linear viscoelastic or otherwise, with strong implications for inverse problems of structural inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aad G et al. (2015) Combined measurement of the Higgs boson mass in p p collisions at s= 7 and 8 TeV with the ATLAS and CMS experiments. Phys Rev Lett 114:191803

  • Abdel-Goad M, Pyckhout-Hintzen W, Kahle S, Allgaier J, Richter D, Fetters LJ (2004) Rheological properties of 1,4-polyisoprene over a large molecular weight range. Macromolecules 37:8135–8144

    Article  CAS  Google Scholar 

  • Ad Hoc Committee on Official Nomenclature and Symbols (2013) Official symbols and nomenclature of the society of rheology. J Rheol 57:1047–1055

    Article  Google Scholar 

  • Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC (2004) The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J 87:4259–4270

    Article  CAS  Google Scholar 

  • Auhl D, Ramirez J, Likhtman AE, Chambon P, Fernyhough C (2008) Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights. J Rheol 52:801–835

    Article  CAS  Google Scholar 

  • Bailer AJ, Portier CJ (1990) A note on fitting one-compartment models: non-linear least squares versus linear least squares using transformed data. J Appl Toxicol 10:303–306

    Article  CAS  Google Scholar 

  • Baumgaertel M, Winter HH (1989) Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol Acta 28:511–519

    Article  CAS  Google Scholar 

  • Beckwith T, Marangoni R, Lienhard V (1993) Mechanical measurements. Addison-Wesley Publishing Company, Reading, Massachusetts

    Google Scholar 

  • Benallal A, Marin G, Montfort J, Derail C (1993) Linear viscoelasticity revisited: the relaxation function of monodisperse polymer melts. Macromolecules 26:7229–7235

    Article  CAS  Google Scholar 

  • Bevington PR, Robinson DK (2003) Data reduction and error analysis for the physical sciences. McGraw–Hill, New York

    Google Scholar 

  • Bharadwaj NA, Ewoldt RH (2014) The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear. J Rheol 58:891–910

    Article  CAS  Google Scholar 

  • Bharadwaj NA, Schweizer KS, Ewoldt RH (2017) A strain stiffening theory for transient polymer networks under asymptotically nonlinear oscillatory shear. J Rheol 61:643–665

    Article  CAS  Google Scholar 

  • Carrot C, Guillet J (1997) From dynamic moduli to molecular weight distribution: a study of various polydisperse linear polymers. J Rheol 41:1203–1220

    Article  CAS  Google Scholar 

  • Chiba S, Smith DL (1994) Impacts of data transformations on least-squares solutions and their significance in data analysis and evaluation. J Nucl Sci Technol 31:770–781

    Article  Google Scholar 

  • Cziep MA, Abbasi M, Heck M, Arens L, Wilhelm M (2016) Effect of molecular weight, polydispersity, and monomer of linear homopolymer melts on the intrinsic mechanical nonlinearity 3 Q 0(ω) in MAOS. Macromolecules 49:3566–3579

  • Dealy JM, Larson RG (2006a) Structure and rheology of molten polymers: from structure to flow behavior and back again, Chapter 6. Hanser Publishers, Munich

  • Dealy JM, Larson RG (2006b) Structure and rheology of molten polymers: from structure to flow behavior and back again, Appendix. Hanser Publishers, Munich

    Book  Google Scholar 

  • Des Cloizeaux J (1984) Polymer melt: reptation of a chain and viscosity. J Phys Lett 45:17–26

    Article  CAS  Google Scholar 

  • Des Cloizeaux J (1990) Relaxation and viscosity anomaly of melts made of long entangled polymers: time-dependent reptation. Macromolecules 23:4678–4687

    Article  CAS  Google Scholar 

  • Diez DM, Barr CD, Cetinkaya-Rundel M (2015) OpenIntro Statistics, Third edition, OpenIntro

  • Doi M (1981) Explanation for the 3.4 power law of viscosity of polymeric liquids on the basis of the tube model. J Polym Sci Polym Lett Ed 19:265–273

    Article  CAS  Google Scholar 

  • Doi M (1983) Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model. J Polym Sci Polym Phys Ed 21:667–684

    Article  CAS  Google Scholar 

  • Doi M, Edwards S (1978a) Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state. J Chem Soc Faraday Trans 2 Mol Chem Phys 74:1789–1801

    Article  CAS  Google Scholar 

  • Doi M, Edwards S (1978b) Dynamics of concentrated polymer systems. Part 2.—molecular motion under flow. J Chem Soc Faraday Trans 2 Mol Chem Phys 74:1802–1817

    Article  CAS  Google Scholar 

  • Doi M, Edwards S (1978c) Dynamics of concentrated polymer systems. Part 3.—the constitutive equation, J Chem Soc Faraday Trans 2 Mol Chem Phys 74:1818–1832

  • Doi M, Edwards S (1979) Dynamics of concentrated polymer systems. Part 4.—rheological properties. J Chem Soc Faraday Trans 2 Mol Chem Phys 75:38–54

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University press, New York

    Google Scholar 

  • Elster C, Honerkamp J (1992) The role of the error model in the determination of the relaxation time spectrum. J Rheol 36:911–927

  • Ewoldt RH, Bharadwaj NA (2013) Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheol Acta 52:201–219

  • Ewoldt RH, Johnston MT, Caretta LM (2015) Experimental challenges of shear rheology: how to avoid bad data. In: Saverio Spagnolie (ed) Complex Fluids in Biological Systems. Springer, Berlin

  • Franck A, Grehlinger M (2004) Benefit of fast data sampling during rheological testing, proc. XIVth Intl. Congress on Rheology, 22–27

  • Freedman D (1980) The empirical distribution of Fourier coefficients. Ann Stat 8:1244–1251

    Article  Google Scholar 

  • Freund JB, Ewoldt RH (2015) Quantitative rheological model selection: good fits versus credible models using Bayesian inference. J Rheol 59:667–701

    Article  CAS  Google Scholar 

  • Friedrich C, Gleinser W, Korat E, Maier D, Weese J (1995) Comparison of sphere-size distributions obtained from rheology and transmission electron microscopy in PMMA/PS blends. J Rheol 39:1411–1425

    Article  CAS  Google Scholar 

  • Frodesen AG, Skjeggestad O, Toefte H (1979) Probability and statistics in particle physics. Universitetsforlaget, Oslo

    Google Scholar 

  • Graebling D, Muller R (1990) Rheological behavior of polydimethylsiloxane/polyoxyethylene blends in the melt. Emulsion model of two viscoelastic liquids. J Rheol 34:193–205

    Article  Google Scholar 

  • Graebling D, Muller R, Palierne J (1993a) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329

    Article  CAS  Google Scholar 

  • Graebling D, Muller R, Palierne J (1993b) Linear viscoelasticity of incompatible polymer blends in the melt in relation with interfacial properties. J Phys IV(3):C7–1525–C7–1534

    Google Scholar 

  • Graebling D, Benkira A, Gallot Y, Muller R (1994) Dynamic viscoelastic behaviour of polymer blends in the melt—experimental results for PDMS/POE-DO, PS/PMMA and PS/PEMA blends. Eur Polym J 30:301–308

    Article  CAS  Google Scholar 

  • Graham RS, Likhtman AE, McLeish TC, Milner ST (2003) Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release. J Rheol 47:1171–1200

    Article  CAS  Google Scholar 

  • Gramespacher H, Meissner J (1992) Interfacial tension between polymer melts measured by shear oscillations of their blends. J Rheol 36:1127–1141

    Article  CAS  Google Scholar 

  • Grehlinger M (2003) A technique for the rapid acquisition of rheological data, and its application to fast curing systems, NATAS conference proceeding, This conference was held in Albuquerque, New Mexico, USA

  • Grindy SC, Learsch R, Mozhdehi D, Cheng J, Barrett DG, Guan Z, Messersmith PB, Holten-Andersen N (2015) Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat Mater 14:1210–1216

    Article  CAS  Google Scholar 

  • Gundlach JH, Merkowitz SM (2000) Measurement of Newton’s constant using a torsion balance with angular acceleration feedback. Phys Rev Lett 85:2869–2872

    Article  CAS  Google Scholar 

  • Honerkamp J, Weese J (1989) Determination of the relaxation spectrum by a regularization method. Macromolecules 22:4372–4377

    Article  CAS  Google Scholar 

  • Honerkamp J, Weese J (1990) Tikhonovs regularization method for ill-posed problems. Contin Mech Thermodyn 2:17–30

    Article  Google Scholar 

  • Honerkamp J, Weese J (1993) A nonlinear regularization method for the calculation of relaxation spectra. Rheol Acta 32:65–73

    Article  CAS  Google Scholar 

  • Inkson N, McLeish T, Harlen O, Groves D (1999) Predicting low density polyethylene melt rheology in elongational and shear flows with “pom-pom” constitutive equations. J Rheol 43:873–896

    Article  CAS  Google Scholar 

  • James F (2006) Statistical methods in experimental physics. World Scientific Publishing Co Inc, Singapore

    Book  Google Scholar 

  • Kawata T (1966) On the Fourier series of a stationary stochastic process. Z. Wahrscheinliehkeitstheorie verw. Geb. 6:224–245

    Article  Google Scholar 

  • Lang C (2017) A Laplace transform method for molecular mass distribution calculation from rheometric data. J Rheol 61:947–954

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Larson R, Sridhar T, Leal L, McKinley G, Likhtman A, McLeish T (2003) Definitions of entanglement spacing and time constants in the tube model. J Rheol 47:809–818

    Article  CAS  Google Scholar 

  • Laun HM (1978) Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function. Rheol Acta 17:1–15

    Article  CAS  Google Scholar 

  • Likhtman AE, McLeish TC (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35:6332–6343

    Article  CAS  Google Scholar 

  • Macosko CW (1994a) Rheology: principles, measurements, and applications. Wiley, New York

    Google Scholar 

  • Macosko CW (1994b) Rheology: principles, measurements, and applications (Appendix 3A by Robert Secor). Wiley, New York

    Google Scholar 

  • McLeish T (2002) Tube theory of entangled polymer dynamics. Adv Phys 51:1379–1527

    Article  CAS  Google Scholar 

  • McLeish T, Larson R (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42:81–110

    Article  CAS  Google Scholar 

  • Mead D (1994a) Numerical interconversion of linear viscoelastic material functions. J Rheol 38:1769–1795

    Article  CAS  Google Scholar 

  • Mead D (1994b) Determination of molecular weight distributions of linear flexible polymers from linear viscoelastic material functions. J Rheol 38:1797–1827

    Article  CAS  Google Scholar 

  • Milner S, McLeish T (1998) Reptation and contour-length fluctuations in melts of linear polymers. Phys Rev Lett 81:725–728

    Article  CAS  Google Scholar 

  • Mourey TH, Turner S, Rubinstein M, Fréchet J, Hawker C, Wooley K (1992) Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules 25:2401–2406

    Article  CAS  Google Scholar 

  • Needs R (1984) Computer simulation of the effect of primitive path length fluctuations in the reptation model. Macromolecules 17:437–441

    Article  CAS  Google Scholar 

  • Nobile MR, Cocchini F (2001) Evaluation of molecular weight distribution from dynamic moduli. Rheol Acta 40:111–119

    Article  CAS  Google Scholar 

  • Oliver TA, Terejanu G, Simmons CS, Moser RD (2015) Validating predictions of unobserved quantities. Comput Methods Appl Mech Eng 283:1310–1335

    Article  Google Scholar 

  • Palierne J (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  • Pattamaprom C, Larson RG, Van Dyke TJ (2000) Quantitative predictions of linear viscoelastic rheological properties of entangled polymers. Rheol Acta 39:517–531

    Article  CAS  Google Scholar 

  • Pattamaprom C, Larson RG, Sirivat A (2008) Determining polymer molecular weight distributions from rheological properties using the dual-constraint model. Rheol Acta 47:689–700

    Article  CAS  Google Scholar 

  • Pearson DS (1987) Recent advances in the molecular aspects of polymer viscoelasticity. Rubber Chem Technol 60:439–496

    Article  CAS  Google Scholar 

  • Pearson DS, Rochefort WE (1982) Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J Polym Sci Polym Phys Ed 20:83–98

    Article  CAS  Google Scholar 

  • Press WH (2007) Numerical recipes : The art of scientific computing, Cambridge university press, Third edition, Cambridge

  • Roovers J (1986) Linear viscoelastic properties of polybutadiene. A comparison with molecular theories. Polym J 18:153–162

    Article  CAS  Google Scholar 

  • Rubinstein M, Colby RH (1988) Self-consistent theory of polydisperse entangled polymers: linear viscoelasticity of binary blends. J Chem Phys 89:5291–5306

    Article  CAS  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York

    Google Scholar 

  • Schroyen B, Swan JW, Van Puyvelde P, Vermant J (2017) Quantifying the dispersion quality of partially aggregated colloidal dispersions by high frequency rheology. Soft Matter 13:7897–7906

    Article  CAS  Google Scholar 

  • Singh PK, Soulages JM, Ewoldt RH (2018) Frequency-sweep medium-amplitude oscillatory shear (MAOS). J Rheol 62:277–293

    Article  CAS  Google Scholar 

  • Sivia D, Skilling J (2006) Data Analysis: A Bayesian Tutorial. Oxford University Press, Oxford

    Google Scholar 

  • Song HY, Nnyigide OS, Salehiyan R, Hyun K (2016) Investigation of nonlinear rheological behavior of linear and 3-arm star 1,4-cis-polyisoprene (PI) under medium amplitude oscillatory shear (MAOS) flow via FT-rheology. Polymer 104:268–278

  • Stadler F, Bailly C (2009) A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol Acta 48:33–49

    Article  CAS  Google Scholar 

  • TA Instruments (2003) ARES rheometer: rheometrics series user manual.

  • Tuminello WH (1986) Molecular weight and molecular weight distribution from dynamic measurements of polymer melts. Polym Eng Sci 26:1339–1347

    Article  CAS  Google Scholar 

  • Van Ruymbeke E, Keunings R, Bailly C (2002) Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data. J Non-Newtonian Fluid Mech 105:153–175

    Article  Google Scholar 

  • Velankar S, Giles D (2007) How do I know if my phase angles are correct?, Rheol. Bull 76(2): 8-20

  • Vinckier I, Moldenaers P, Mewis J (1996) Relationship between rheology and morphology of model blends in steady shear flow. J Rheol 40:613–631

    Article  CAS  Google Scholar 

  • Vittorias I, Parkinson M, Klimke K, Debbaut B, Wilhelm M (2007) Detection and quantification of industrial polyethylene branching topologies via Fourier-transform rheology, NMR and simulation using the Pom-pom model. Rheol Acta 46:321–340

    Article  CAS  Google Scholar 

  • Wagner MH, Rolón-Garrido VH, Hyun K, Wilhelm M (2011) Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers. J Rheol 55:495–516

    Article  CAS  Google Scholar 

  • Watanabe H (1999) Viscoelasticity and dynamics of entangled polymers. Prog Polym Sci 24:1253–1403

    Article  CAS  Google Scholar 

  • Yang IK, Shine AD (1992) Electrorheology of a nematic poly (n-hexyl isocyanate) solution. J Rheol 36:1079–1104

    Article  CAS  Google Scholar 

  • Zou W, Tang X, Weaver M, Koenig P, Larson RG (2015) Determination of characteristic lengths and times for wormlike micelle solutions from rheology using a mesoscopic simulation method. J Rheol 59:903–934

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Tiffany R. Price for collecting the strain amplitude sweep data of Fig. S1, supplementary material and also for collecting a huge dataset of repeat SAOS measurements for various material systems, which although not included in this work, was instrumental in generating confidence in the experimental trend of uncertainties shown here.

The authors are grateful to Dr. Luca Martinetti of the University of Illinois at Urbana-Champaign for the helpful discussions. We thank Professor Jonathan B. Freund of the University of Illinois at Urbana-Champaign for insightful conversations on uncertainty quantification. The authors also thank Professor Emeritus Steven M. Errede of the University of Illinois at Urbana-Champaign for insightful discussions on the analysis of experimental measurements from a statistical perspective. The authors are also grateful to Professor Daniel J Read of the University of Leeds for prompting us to include covariances in calculations using Eq. 4, whenever it was applicable. This work was supported by the ExxonMobil Research and Engineering Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy H. Ewoldt.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1593 kb)

APPENDIX

APPENDIX

Least squares estimate under data transformation

As per the notation of Eq. (1), for S1, S2 : G′, G″; w = S, the objective function is given as

$$ {\mathrm{RSS}}_1=\sum \limits_{i=1}^N\left\{\kern0.48em {\left(1-\frac{{\hat{G\prime}}_i\left({\omega}_i,\overrightarrow{p}\right)}{G{\prime}_i\left({\omega}_i\right)}\right)}^2+{\left(1-\frac{{\hat{G{\prime\prime}}}_i\left({\omega}_i,\overrightarrow{p}\right)}{G{{\prime\prime}}_i\left({\omega}_i\right)}\right)}^2\right\} $$
(19)

Similarly for S1, S2 : G, tan δ; w = S, the objective function is given as

$$ {\mathrm{RSS}}_2=\sum \limits_{i=1}^N\left\{\kern0.48em {\left(1-\frac{{{\hat{G}}_i}^{\ast}\left({\omega}_i,\overrightarrow{p}\right)}{{G_i}^{\ast}\left({\omega}_i\right)}\right)}^2+{\left(1-\frac{\tan\;{\hat{\delta}}_i\left({\omega}_i,\overrightarrow{p}\right)}{\tan\;{\delta}_i\left({\omega}_i\right)}\right)}^2\right\} $$
(20)

RSS2 can be written in terms of {G′, G″} using the nonlinear transformation shown in Table 2 as

$$ {\mathrm{RSS}}_2=\sum \limits_{i=1}^N\left\{\kern0.48em {\left(1-\frac{\sqrt{G\prime {\hat{\mkern6mu}}_i{\left({\omega}_i,\overrightarrow{p}\right)}^2+G\prime \prime {\hat{\mkern6mu}}_i{\left({\omega}_i,\overrightarrow{p}\right)}^2}}{\sqrt{G{\prime}_i{\left({\omega}_i\right)}^2+G{{\prime\prime}}_i{\left({\omega}_i\right)}^2}}\right)}^2+{\left(1-\frac{{\hat{G{\prime\prime}}}_i\left({\omega}_i,\overrightarrow{p}\right)\times G{\prime}_i\left({\omega}_i\right)}{{\hat{G\prime}}_i\left({\omega}_i,\overrightarrow{p}\right)\times G{{\prime\prime}}_i\left({\omega}_i\right)}\right)}^2\right\} $$
(21)

Clearly, RSS1 ≠ RSS2 for the same weighting under a nonlinear data transformation. Now, we consider the S1, S2 : η′, η″; w = S case for which

$$ {\mathrm{RSS}}_3=\sum \limits_{i=1}^N\left\{{\left(1-\frac{{\hat{\eta \prime}}_i\left({\omega}_i,\overrightarrow{p}\right)}{\eta {\prime}_i\left({\omega}_i\right)}\right)}^2+{\left(1-\frac{{\hat{\eta {\prime\prime}}}_i\left({\omega}_i,\overrightarrow{p}\right)}{\eta {{\prime\prime}}_i\left({\omega}_i\right)}\right)}^2\right\} $$
(22)

RSS3 can be written in terms of {G′, G″} using the linear data transformation shown in Table 2 as

$$ {\displaystyle \begin{array}{l}{\mathrm{RSS}}_3=\sum \limits_{i=1}^N\left\{{\left(1-\frac{{\hat{G{\prime\prime}}}_i\left({\omega}_i,\overrightarrow{p}\right)}{G{{\prime\prime}}_i\left({\omega}_i\right)}\right)}^2+{\left(1-\frac{{\hat{G\prime}}_i\left({\omega}_i,\overrightarrow{p}\right)}{G{\prime}_i\left({\omega}_i\right)}\right)}^2\right\}\\ {}\kern0.75em \end{array}} $$
(23)

Clearly, RSS1 = RSS3 under a linear data transformation where the weighting transforms according to the law of error propagation, i.e., Eq. (7).

Derivation of phase angle uncertainty

Here, we derive the phase angle uncertainty uδ given by Eq. (11). In particular, we establish an upper bound on the phase angle uncertainty uδ by looking at the signal zero-crossing locations locally, and then quantifying the uncertainty in these locations due to the finite resolution of the rheometer. In Fig. 9, we show point A as the apparent zero-crossing location for a qualitative torque signal when the signal is perfectly sinusoidal. Due to the resolution uncertainty, the actual value of torque at point A can lie anywhere on the vertical line BC where the length of BC is \( 2\;{u}_{T_0} \). Assuming that the signal still follows the sinusoidal shape with same frequency, the real zero-crossing location lies along the line ED. So, the real zero-crossing can occur earlier (along the line EA) or later (along the line AD) with respect to apparent zero-crossing location A. The maximum uncertainty in the zero-crossing location occurs at points E and D and its magnitude is given by \( {u}_{t\;\left({T}_0\right)} \).

Fig. 9
figure 9

Actual magnitude of torque at apparent zero-crossing location A of a perfectly sinusoidal signal (solid line) can lie anywhere along the line BC where the length AB represents the torque resolution uncertainty \( {u}_{T_0} \) of the instrument. As a result, the actual zero-crossing can be delayed and lie along AD (signal shown as dashed line), or it can be expedited and lie along AE (signal shown as dash-dot line). The maximum uncertainty in the zero-crossing location corresponds to either point D or E and has the same magnitude given by Eq. (25)

The sinusoidal waveform EC in Fig. 9 has an angular frequency ω and an amplitude T0. Labeling the time as t = 0 at E, the amplitude at C (=\( {u}_{T_0} \)) is given by

$$ {u}_{T_0}={T}_0\sin \left(\omega\;{u}_{t\;\left({T}_0\right)}\right), $$
(24)

which provides an expression for the zero-crossing location uncertainty in torque signal as

$$ {u}_{t\;\left({T}_0\right)}=\frac{1}{\omega }{\sin}^{-1}\left(\frac{u_{T_0}}{T_0}\right)\kern2.999999em \mathrm{for}\kern0.24em {u}_{T_0}\le {T}_0. $$
(25)

Equation (24) is valid when \( {u}_{T_0} \) ≤ T0. For a signal smaller than the resolution limit, the waveform cannot be resolved by the rheometer. In that case, the zero-cross location uncertainty reaches its maximum at

$$ {u}_{t\;\left({T}_0\right)}=\frac{\pi }{2\omega}\kern5.399997em \mathrm{for}\kern0.24em {u}_{T_0}>{T}_0. $$
(26)

Similar to Eqs. (25)–(26), the uncertainty in the angular displacement zero-crossing location \( {u}_{t\;\left({\theta}_0\right)} \) is given by

$$ {u}_{t\;\left({\theta}_0\right)}=\frac{1}{\omega }{\sin}^{-1}\left(\frac{u_{\theta_0}}{\theta_0}\right)\kern2.999999em \mathrm{for}\kern0.24em {u}_{\theta_0}\le {\theta}_0 $$
(27)
$$ {u}_{t\;\left({\theta}_0\right)}=\frac{\pi }{2\omega}\kern5.399997em \mathrm{for}\kern0.24em {u}_{\theta_0}>{\theta}_0. $$
(28)

The zero-crossing location uncertainties in torque and displacement add up if the real zero-crossing locations are on opposite sides of their respective apparent zero-crossing locations. On the other hand, they subtract if the real zero-crossing locations are on the same side of their apparent zero-crossing locations. The upper bound on phase angle uncertainty is given for the first case as

$$ {u}_{\delta }=\omega \left({u}_{t\;\left({T}_0\right)}+{u}_{t\;\left({\theta}_0\right)}\right), $$
(29)

which on simplification using Eqs. (25)–(28) gives

$$ {u}_{\delta }=\left\{\begin{array}{l}{\sin}^{-1}\left(\frac{u_{T_0}}{T_0}\right)+{\sin}^{-1}\left(\frac{u_{\theta_0}}{\theta_0}\right)\kern6.839995em \mathrm{for}\kern0.24em {u}_{T_0}\le {T}_0\&{u}_{\theta_0}\le {\theta}_0\\ {}\frac{\pi }{2}+{\sin}^{-1}\left(\frac{u_{\theta_0}}{\theta_0}\right)\kern8.999993em \mathrm{for}\kern0.24em {u}_{T_0}>{T}_0\&{u}_{\theta_0}\le {\theta}_0\\ {}{\sin}^{-1}\left(\frac{u_{T_0}}{T_0}\right)+\frac{\pi }{2}\kern9.119993em \mathrm{for}\kern0.24em {u}_{T_0}\le {T}_0\&{u}_{\theta_0}>{\theta}_0\\ {}\pi \kern12.47999em \mathrm{for}\kern0.24em {u}_{T_0}>{T}_0\&{u}_{\theta_0}>{\theta}_0\end{array}\right\} $$
(30)

Uncertainty weighted fits ignoring data covariances

If covariances are ignored in Eq. (4), we get results which are presented in Figs. 10 and 11 (analogous to Figs. 7 and 8). Even if covariances are ignored, conclusions do not change and still a significant reduction of subjectivity effects in fitting is observed while using data uncertainty weighting. When accounting for covariances, the fit parameters \( {G}_{\mathrm{N}}^0 \) and \( {\tau}_{\mathrm{d}}^{\infty } \) vary by up to a factor of 1.02 and 1.01 respectively for w = uS and w = \( {\hat{u}}_S \) (Fig. 8); this factor while ignoring covariances becomes 1.02 for both cases as shown in Fig. 11.

Fig. 10
figure 10

Fit parameter estimates when neglecting data covariances for all weightings

Fig. 11
figure 11

Zoomed-in data of Fig. 10 only showing the parameter estimates from fits weighted by (a) experimental data uncertainty w = uS and (b) estimated data uncertainty \( w={\hat{u}}_S \). These have been calculated by ignoring covariances in Eq. (4)

Model parameterization using viscosity and characteristic timescale

Parameter uncertainty may depend on which model parameterization is chosen. For the coupled reptation and contour-length fluctuations model used here, rather than \( {G}_{\mathrm{N}}^0 \) and \( {\tau}_{\mathrm{d}}^{\infty } \) as the model parameters, we can use zero-shear viscosity η0 and \( {\tau}_{\mathrm{d}}^{\infty } \) as the model parameters. The zero-shear viscosity η0 is related to \( {G}_{\mathrm{N}}^0 \) and \( {\tau}_{\mathrm{d}}^{\infty } \) for this case as (Doi 1981; Roovers 1986)

$$ {\eta}_0=\frac{1}{3}{G}_{\mathrm{N}}^0{\tau}_{\mathrm{d}}^{\infty}\left[{\left(1-\frac{\nu }{\sqrt{Z}}\right)}^3+\frac{\nu^3}{5Z\sqrt{Z}}\right] $$
(31)

For the terminal regime dataset considered here, we find the η0 parameterization has smaller uncertainty than the \( {G}_{\mathrm{N}}^0 \) parameterization, i.e., η0 shows reduced effects of subjective choices of data representation and residual weighting compared to \( {G}_{\mathrm{N}}^0 \). Figure 12 shows that the fit estimates of η0 for all representations and weightings vary by a factor of only 1.04 as compared to 1.64 for \( {G}_{\mathrm{N}}^0 \). Uncertainty weighted fits (accounting for covariances) further reduce the subjectivity effect for η0. As shown in Fig. 13, η0 varies by up to a factor of 1.01 for w = uS and 1.0009 for w = \( {\hat{u}}_S \).

Fig. 12
figure 12

Results of Fig. 7 recast in terms of τd and η0 (rather than G0N), using various data representations and residual weightings. For fits weighted by experimental data uncertainty w = uS and estimated data uncertainty\( w={\hat{u}}_S \), data covariances were accounted for using Eq. (4)

Fig. 13
figure 13

Zoomed-in data of Fig. 12 only showing the parameter estimates from fits weighted by (a) experimental data uncertainty w = uS and (b) estimated data uncertainty \( w={\hat{u}}_S \). Data covariances were accounted for using Eq. (4). Note that η0 varies by only up to a factor of 1.0009 in (b)

This fortuitous reduction in subjectivity for η0 is due to the available experimental data being in the terminal regime of a viscoelastic liquid where viscous effects dominate. A different result may be expected for a viscoelastic liquid with high-frequency experimental data and dominating elastic effects. The ultimate choice of parameterization depends on how the information is used, e.g., inference of different molecular or microstructural aspects related to either \( {G}_{\mathrm{N}}^0 \) or η0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Soulages, J.M. & Ewoldt, R.H. On fitting data for parameter estimates: residual weighting and data representation. Rheol Acta 58, 341–359 (2019). https://doi.org/10.1007/s00397-019-01135-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-019-01135-1

Keywords

Navigation