Skip to main content

Advertisement

Log in

Rheology measurements of a biomass slurry: an inter-laboratory study

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The conversion of biomass, specifically lignocellulosic biomass, into fuels and chemicals has recently gained national attention as an alternative to the use of fossil fuels. Increasing the concentration of the biomass solids during biochemical conversion has a large potential to reduce production costs. These concentrated biomass slurries have highly viscous, non-Newtonian behavior that poses several technical challenges to the conversion process. A collaborative effort to measure the rheology of a biomass slurry at four separate laboratories has been undertaken. A comprehensive set of rheological properties were measured using several different rheometers, flow geometries, and experimental methods. The tendency for settling, water evaporation, and wall slip required special care when performing the experiments. The rheological properties were measured at different concentrations up to 30% insoluble solids by mass. The slurry was found to be strongly shear-thinning, to be viscoelastic, and to have a significant concentration-dependent yield stress. The elastic modulus was found to be almost an order of magnitude larger than the loss modulus and weakly dependent on frequency. The techniques and results of this work will be useful to characterize other biomass slurries and in the design of biochemical conversion processing steps that operate at high solids concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bennington CPJ, Kerekes RJ, Grace JR (1990) The yield stress of fiber suspensions. Can J Chem Eng 68(5):748–757

    Article  CAS  Google Scholar 

  • Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. J Rheol 47(5):1211–1226

    Article  CAS  ADS  Google Scholar 

  • Blanco A, Negro C, Fuente E, Tijero J (2007) Rotor selection for a searle-type device to study the rheology of paper pulp suspensions. Chem Eng Process 46(1):37–44

    Article  CAS  Google Scholar 

  • Coussot P (2005) Rheometry of pastes, suspensions, and granular materials: applications in industry and environment. Wiley, Hoboken

    Book  Google Scholar 

  • Coussot P (2007) Rheophysics of pastes: a review of microscopic modelling approaches. Soft Matter 3(5):528–540

    Article  CAS  Google Scholar 

  • Dalpke B, Kerekes RJ (2005) The influence of fibre properties on the apparent yield stress of flocculated pulp suspensions. J Pulp Pap Sci 31(1):39–43

    CAS  Google Scholar 

  • Damani R, Powell RL, Hagen N (1993) Viscoelastic characterization of medium consistency pulp suspensions. Can J Chem Eng 71(5):676–684

    Article  CAS  Google Scholar 

  • Dasari RK, Berson RE (2007) The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Appl Biochem Biotechnol 137:289–299

    Article  PubMed  ADS  Google Scholar 

  • Ehrhardt MR (2008) Rheology of biomass. Master’s thesis, University of Wisconsin, Madison, WI

    Google Scholar 

  • Ehrhardt MR, Monz TO, Root TW, Connelly RK, Scott CT, Klingenberg DJ (2009) Rheology of dilute acid hydrolyzed corn stover at high solids concentration. Appl Biochem Biotechnol. doi:10.1007/s12010-009-8606-z

    PubMed  Google Scholar 

  • Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458

    Article  CAS  ADS  Google Scholar 

  • Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96(5):862–870

    Article  PubMed  CAS  Google Scholar 

  • Kerekes RJ (2006) Rheology of suspensions—rheology of fibre suspensions in papermaking: an overview of recent research. Nord Pulp Paper Res 21(5):598–612

    Article  CAS  Google Scholar 

  • Knutsen JS, Liberatore MW (2009) Rheology of high-solids biomass slurries for biorefinery applications. J Rheol 53:877–892

    Article  CAS  ADS  Google Scholar 

  • Kolli VG, Pollauf EJ, Gadala-Maria F (2002) Transient normal stress response in a concentrated suspension of spherical particles. J Rheol 46(1):321–334

    Article  CAS  ADS  Google Scholar 

  • Liddell PV, Boger DV (1996) Yield stress measurements with the vane. J Non-Newton Fluid Mech 63(2–3):235–261

    Article  CAS  Google Scholar 

  • Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465

    Article  Google Scholar 

  • Narumi T, See H, Honma Y, Hasegawa T, Takahashi T, Phan-Thien N (2002) Transient response of concentrated suspensions after shear reversal. J Rheol 46(1):295–305

    Article  CAS  ADS  Google Scholar 

  • Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47–88

    Article  ADS  Google Scholar 

  • Nguyen QD, Akroyd T, De Kee DC, Zhu LX (2006) Yield stress measurements in suspensions: an inter-laboratory study. Korea-Aust Rheol J 18(1):15–24

    Google Scholar 

  • Pimenova NV, Hanley TR (2003) Measurement of rheological properties of corn stover suspensions. Appl Biochem Biotechnol 106:383–392

    Article  Google Scholar 

  • Pimenova NV, Hanley AR (2004) Effect of corn stover concentration on rheological characteristics. Appl Biochem Biotechnol 114:347–360

    Article  Google Scholar 

  • Roche CM, Dibble CJ, Knutsen JS, Stickel JJ, Liberatore MW (2009) Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2):290–300

    Article  CAS  PubMed  Google Scholar 

  • Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer AS (2007) Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl Biochem Biotechnol 143(1):27–40

    Article  CAS  PubMed  Google Scholar 

  • Schell DJ, Farmer J, Newman M, McMillan JD (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor—investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol 105:69–85

    Article  PubMed  Google Scholar 

  • Shih WY, Shih WH, Aksay IA (1999) Elastic and yield behavior of strongly flocculated colloids. J Am Ceram Soc 82(3):616–624

    Article  CAS  Google Scholar 

  • Stickel JJ, Phillips RJ, Powell RL (2007) Application of a constitutive model for particulate suspensions: Time-dependent viscometric flows. J Rheol 51(6):1271–1302

    Article  CAS  ADS  Google Scholar 

  • Swerin A, Powell RL, Oedberg L (1992) Linear and nonlinear dynamic viscoelasticity of pulp fiber suspensions. Nord Pulp Paper Res 7(3):126–143

    Article  CAS  Google Scholar 

  • Switzer LH, Klingenberg DJ (2003) Rheology of sheared flexible fiber suspensions via fiber-level simulations. J Rheol 47(3):759–778

    Article  CAS  ADS  Google Scholar 

  • Tanner RI (2000) Engineering rheology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Ventura C, Blanco A, Negro C, Ferreira P, Garcia F, Rasteiro M (2007) Modeling pulp fiber suspension rheology. TAPPI J 6(7):17–23

    CAS  Google Scholar 

  • Viamajala S, McMillan JD, Schell DJ, Elander RT (2009) Rheology of corn stover slurries at high solids concentrations—effects of saccharification and particle size. Bioresour Technol 100(2):925–934

    Article  CAS  PubMed  Google Scholar 

  • Voltz C, Nitschke M, Heymann L, Rehberg I (2002) Thixotropy in macroscopic suspensions of spheres. Phys Rev E 65(5):051402-1–051402-5

    ADS  Google Scholar 

  • Walls HJ, Caines SB, Sanchez AM, Khan SA (2003) Yield stress and wall slip phenomena in colloidal silica gels. J Rheol 47(4):847–868

    Article  CAS  ADS  Google Scholar 

  • Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: Comparison of ssf and shf and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153–157

    Article  CAS  PubMed  Google Scholar 

  • Yang MC, Scriven LE, Macosko CW (1986) Some rheological measurements on magnetic iron-oxide suspensions in silicone oil. J Rheol 30(5):1015–1029

    Article  CAS  ADS  Google Scholar 

  • Yao NY, Larsen RJ, Weitz DA (2008) Probing nonlinear rheology with inertio-elastic oscillations. J Rheol 52(4):1013–1025

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the U.S. Department of Energy Office of the Biomass Program and in part by the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service, grant number 2006-35504-17401. J. Stickel would like to thank Christine Roche for help with sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan J. Stickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stickel, J.J., Knutsen, J.S., Liberatore, M.W. et al. Rheology measurements of a biomass slurry: an inter-laboratory study. Rheol Acta 48, 1005–1015 (2009). https://doi.org/10.1007/s00397-009-0382-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0382-8

Keywords

Navigation