Skip to main content
Log in

A study of viscoelasticity and extrudate distortions of wood polymer composites

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Natural fiber composites exhibit a characteristic surface tearing and extrudate distortions upon exiting from extrusion dies. This type of defect is characterized by highly rough, cracked, and distorted extrudate surface. In this study, the extrudate distortions and viscoelastic nature of metallocene-catalyzed polyethylene (mPE)/wood flour composites have been investigated. As the wood flour loading increases the region of linear viscoelasticity shortens. The first normal stress difference decreases, while the storage modulus increases. It was observed that increasing the wood flour loading up to 50 wt% aggravated the surface tearing; however, 60 wt% wood flour in mPE completely eliminated the surface defect. It was also found that increasing the shear rate improved the surface appearance of the filled compounds. This is due to the increased wall slip velocity of the composites at high shear rates and wood filler loadings. Increasing the diameter of the die at the same aspect ratio generally provides more severe surface tearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aral BK, Kalyon DM (1997) Viscoelastic material functions of noncolloidal suspensions with spherical particles. J Rheol 41:599–620

    Article  CAS  Google Scholar 

  • Archer LA (2005) Wall slip: measurements and modeling issues in “polymer processing instabilities-control and understanding.” Hatzikiriakos SG, Migler KB (eds) Dekker, New York

  • Ballenger TF, Chen IJ, Crowder JW, Hagler GE, Bogue DC, White JL (1971) Polymer melt flow instabilities in extrusion: investigation of the mechanism and material and geometric variables. J Rheol 15:195–215

    Article  CAS  Google Scholar 

  • Beaufils P, Vergnes V, Agassant JF (1989) Characterization of the sharkskin defect and its development with the flow conditions. Int Polym Process 4:78–84

    CAS  Google Scholar 

  • Becraft ML, Metzner AB (1992) The rheology, fiber orientation, and processing behavior of fiber-filled fluids. J Rheol 36:143–174

    Article  CAS  Google Scholar 

  • Birinci E, Kalyon DM (2006) Development of extrudate distortions in poly(dimethyl siloxane) and its suspensions with rigid particles. J Rheol 50:313–326

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Chan Y, White JL, Oyanagi Y (1978) A fundamental study of the rheological properties of glass-fiber-reinforced polyethylene and polystyrene melts. J Rheol 22:507–524

    Article  CAS  Google Scholar 

  • Charlton Z (2001) Profile extrusion of highly filled cellulose–polyethylene composites, M.Eng. thesis, Department of Chemical Engineering, McMaster University, Hamilton, Canada

  • Charlton Z, Vlachopoulos J, Suwanda D (2000) Profile extrusion of highly filled recycled HDPE. Society of Plastics Engineers, Annual Technical Conference (ANTEC) 2914–2918

  • Cotten GR (1979) Significance of extensional flow in processing rubbers. Plast Rubber Proc 4:89–95

    CAS  Google Scholar 

  • Crowson RJ, Folkes MJ, Bright PF (1980) Rheology of short glass fiber-reinforced thermoplastics and its application to injection molding I. Fiber motion and viscosity measurement. Polym Eng Sci 20:925–933

    Article  CAS  Google Scholar 

  • Dealy J, Wissburn KF (1990) Melt rheology and its role in plastics processing. Van Nostrand Reinhold, New York

    Google Scholar 

  • Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33:265–287

    Article  Google Scholar 

  • Fujiyama M, Inata H (2002) Melt fracture behavior of polypropylene-type resins with narrow molecular weight distribution. I. Temperature dependence. J Appl Polym Sci 84:2111–2119

    Article  CAS  Google Scholar 

  • George J, Janardhan R, Anand J, Bhagawan S, Thomas S (1996) Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37:5421–5431

    Article  CAS  Google Scholar 

  • Goettler L, Sezna J, DiMauro PJ (1982) Short fiber reinforcement of extruded rubber profiles. Rubber World 187:33–42

    CAS  Google Scholar 

  • Han CD (1976) Rheology in polymer processing. Academic, New York, p 182

    Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1992) Wall slip of molten high density polyethylenes. II. Capillary rheometer studies. J Rheol 36:703–741

    Article  CAS  Google Scholar 

  • Hristov VN, Vasileva S, Krumova M, Lach R, Michler GH (2004) Deformation mechanisms and mechanical properties of modified polypropylene/wood fiber composites. Polym Compos 25:521–526

    Article  CAS  Google Scholar 

  • Hristov V, Takacs E, Vlachopoulos J (2006) Surface tearing and wall slip phenomena in extrusion of highly filled HDPE/wood flour composites. Polym Eng Sci 46:1204–1214

    Article  CAS  Google Scholar 

  • Kalyon DM, Gevgilili H, Shah A (2004) Detachment of the polymer melt from the roll surface: calendering analysis and data from a shear roll extruder. Int Polym Process 19:129–138

    CAS  Google Scholar 

  • Knutson BA, White JL, Abbas K (1981) Rheological and extrusion characteristics of glass fiber-reinforced polycarbonate. J Appl Polym Sci 26:2347–2362

    Article  Google Scholar 

  • Kurtz SJ (1984) Die geometry solutions to sharkskin melt fracture. In: B Mena (ed) Advances in rheology. UNAM, Mexico, pp 399–407

    Google Scholar 

  • Laun HM (1994) Normal stresses in extremely shear thickening polymer dispersions. J Non-Newton Fluid Mech 54:87–108

    Article  CAS  Google Scholar 

  • Lawal A, Kalyon DM (1997) Viscous heating in nonisothermal die flows of viscoplastic fluids with wall slip. Chem Eng Sci 52:1323–1337

    Article  CAS  Google Scholar 

  • Leblanc JL (2002) Rubber-filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687

    Article  CAS  Google Scholar 

  • Li TQ, Wolcott MP (2004) Rheology of HDPE-wood composites: I. Steady state shear and extensional flow. Composites Part A 35:303–311

    Article  Google Scholar 

  • Li TQ, Wolcott MP (2005) Rheology of wood plastics melt, part 1: capillary rheometry of HDPE filled with maple. Polym Eng Sci 45:549–559

    Article  CAS  Google Scholar 

  • Li TQ, Wolcott MP (2006) Rheology of wood plastics melt, part 3: non-linear nature of the flow. Polym Eng Sci 46:114–121

    Article  Google Scholar 

  • Macosko CW (1994) Rheology-principles, measurements, and applications. VCH, New York

    Google Scholar 

  • Maiti SN, Hassan MR (1989) Melt rheological properties of polypropylene-wood flour composites. J Appl Polym Sci 37:2019–2032

    Article  CAS  Google Scholar 

  • Maiti SN, Subbarao R, Ibrahim MN (2004) Effect of wood fibers on the rheological properties of i-PP/Wood fiber composites. J Appl Polym Sci 91:644–650

    Article  CAS  Google Scholar 

  • Marcovich N, Reboredo M, Kenny J, Aranguren M (2004) Rheology of particle suspensions in viscoelastic media. Wood flour-polypropylene melt. Rheol Acta 43:293–303

    Article  CAS  Google Scholar 

  • Migler KB (2005) Sharkskin instability in extrusion. In: KB Migler, Hatzikiriakos S (eds) Polymer processing instabilities: control and understanding. Dekker, New York, pp 135–136

    Google Scholar 

  • Miller E, Rothstein JP (2004) Control of the sharkskin instability in the extrusion of polymer melts using induced temperature gradients. Rheol Acta 44:160–173

    Article  CAS  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Article  CAS  Google Scholar 

  • Moynihan R, Baird D, Ramanathan R (1990) Additional observations on the surface melt fracture behavior of linear low-density polyethylene. J Non-Newton Fluid Mech 36:255–263

    Article  CAS  Google Scholar 

  • Ohl N, Gleissle W (1992) The second normal stress difference for pure and highly filled viscoelastic fluids. Rheol Acta 31:294–305

    Article  CAS  Google Scholar 

  • Payne AR (1960) A note on the existence of a yield point in the dynamic modulus of loaded vulcanizates. J Appl Polym Sci 3:127

    Article  CAS  Google Scholar 

  • Raj RG, Kokta BV, Daneault C (1990) A comparative study on the effect of aging on mechanical properties of LLDPE-glass fiber, mica, and wood fiber composites. J Appl Polym Sci 40:645–655

    Article  CAS  Google Scholar 

  • Ramamurthy AV (1986) Wall slip in viscous fluids and influence of materials of construction. J Rheol 30:337–357

    Article  CAS  Google Scholar 

  • Saheb DN, Jog JP (1999) Natural fiber composites: a review. Adv Polym Technol 18:351–363

    Article  CAS  Google Scholar 

  • Venet C, Vergnes B (1997) Experimental characterization of sharkskin in polyethylenes. J Rheol 41:873–892

    Article  CAS  Google Scholar 

  • Vlachopoulos J, Alam M (1972) Critical stress and recoverable shear for polymer melt fracture. Polym Eng Sci 12:184–192

    Article  CAS  Google Scholar 

  • White JL, Czarnecki I, Tanaka H (1980) Experimental studies of the influence of particle and fiber reinforcement on the rheological properties of polymer melts. Rubber Chem Technol 53:823–835

    CAS  Google Scholar 

  • Wu S (1979) Order–disorder transitions in the extrusion of fiber-filled poly(ethylene terephthalate) and blends. Polym Eng Sci 19:638–650

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. D. Strutt for performing the FEM numerical calculations. Financial supports from McMaster Manufacturing Research Institute (MMRI) and the Extrusion Division of the Society of Plastics Engineers (Lew Erwin Memorial Scholarship to V. Hristov) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Vlachopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hristov, V., Vlachopoulos, J. A study of viscoelasticity and extrudate distortions of wood polymer composites. Rheol Acta 46, 773–783 (2007). https://doi.org/10.1007/s00397-007-0186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0186-7

Keywords

Navigation