Skip to main content
Log in

Theory of polyelectrolyte dendrigrafts

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A mean-field approach is used to analyze equilibrium conformations of polyelectrolyte dendrigrafts comprising ionically charged dendrons attached by focal points to a flexible linear backbone. Power law dependences for local structural parameters, cross-sectional thickness and intergraft distance, are derived as a function of grafting density and degree of branching of the dendrons. The cases of quenched and pH-sensitive ionization of the dendrons are considered. The finite extensibility of the backbone is taken into account. It is demonstrated that an increase in the degree of branching of the dendrons leads to a decrease in the dendrigraft thickness compared with that of the polyelectrolyte molecular brush with the same degree of polymerization of the side chains, while intergraft distance either increases or stays close to counter length of fully extended backbone spacer. The analytical mean-field theory predictions are confirmed by results of numerical self-consistent field modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tomalia DA, Christensen JB, Boas U (2012) Dendrimers, Dendrons and Dendritic Polymers. Cambridge University Press

  2. Boas U, Christensen JB, Heegaard PMH (2006) Dendrimers in Medicine and Biotechnology. RSC Publishing, London

    Google Scholar 

  3. Fan X, Zhao Y, Xu W, Li L (2016) Linear-Dendritic Block copolymer for drug and gene delivery. Mater Sci Eng C 62:943–959

    Article  CAS  Google Scholar 

  4. Mirsharghi S, Knudsen KD, Bagherifam S, Niström B, Boas U (2016) Preparation and self-assembly of amphiphilic polylysine dendrons. New J Chem 40:3597–3611

    Article  CAS  Google Scholar 

  5. Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M, Pricl S, Liang XJ, Rocchi P (2015) Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. PNAS 112:2978–2983

    Article  CAS  Google Scholar 

  6. Dong Y, Yu T, Ding L, Laurini E, Huang Y, Zhang M, Weng Y, Lin S, Chen P, Marson D, Jiang Y, Giorgio S, Pricl S, Liu X, Rocchi P, Peng L (2018) A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J Am Chem Soc 140:16264–16274

    Article  CAS  Google Scholar 

  7. Teertstra SJ, Gauthier M (2004) Dendrigraft polymers: macromolecular engineering on a mesoscopic scale. Prog Polym Sci 29:277–327

    Article  CAS  Google Scholar 

  8. Yuan J, Müller AHE, Matyjaszewski K, Sheiko S (2012) . In: Matyjaszewski K, Möller M (eds) Polymer Science: A Comprehensive Reference. Elsevier, Amsterdam

  9. Klajnert B, Cortijo-Arellano M, Cladera J, Bryszewska M (2006) Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochem Biophys Res Commun 345:21–28

    Article  CAS  Google Scholar 

  10. Klementieva O, Benseny-Cases N, Gella A, Appelhans D, Voit B, Cladera J (2011) Dense shell glycodendrimers as potential nontoxic anti-amyloidogenic agents in Alzheimer’s disease. Amyloiddendrimer aggregates morphology and cell toxicity. Biomacromolecules 12:3903–3909

    Article  CAS  Google Scholar 

  11. Neelov I, Khamidova D, Bezrodnyi V, Mikhtaniuk S (2019) Molecular dynamics simulation of interaction of lysine dendrigraft of 2nd generation with stack of amyloid peptides. International Journal of Biology and Biomedical Engineering 13:26–31

    Google Scholar 

  12. Kröger M, Peleg O, Halperin A (2010) From dendrimers to dendronized polymers and forests: scaloing theory and its limitations. Macromolecules 43:6213–6224

    Article  Google Scholar 

  13. Borisov OV, Zhulina EB, Birshtein TM (2012) On the persistence length of dendritic molecular brushes. ACS Macro Letters 1:1166–1169

    Article  CAS  Google Scholar 

  14. Mikhailov IV, Darinskii AA, Zhulina EB, Borisov OV, Leermakers FAM (2015) Persistence length of dendronized polymers: the self-consistent field theory. Soft Matter 11:9367–9378

    Article  CAS  Google Scholar 

  15. Ballauff M, Borisov OV (2006) Polyelectrolyte brushes. Current Opinion in Colloid and Interface Science 11:316–323

    Article  CAS  Google Scholar 

  16. Rühe J, Ballauff M, Biesalski M, Dziezok P, Gröhn F, Johannsmann D, Houbenov N, Hugenberg N, Konradi R, Minko S, Motornov M, Netz RR, Schmidt M, Seidel C, Stamm M, Stephan T, Usov D, Zhan H (2004) Polyelectrolyte brushes. Adv Polym Sci 165:79

    Article  Google Scholar 

  17. Lebedeva IO, Zhulina EB, Leermakers FAM, Borisov OV (2017) Dendron and hyperbranched polymer brushes in good and poor solvents. Langmuir 33:1315–1325

    Article  CAS  Google Scholar 

  18. Polotsky AA, Daoud M, Borisov OV, Birshtein TM (2010) A quantitative theory of mechanical unfolding of a homopolymer globule. Macromolecules 43:1629–1643

    Article  CAS  Google Scholar 

  19. Polotsky AA, Leermakers FAM, Zhulina EB, Birshtein TM (2012) On the Two-Population structure of brushes made of Arm-Grafted polymer stars. Macromolecules 45:7260–7273

    Article  CAS  Google Scholar 

  20. Zhulina EB, Leermakers FAM, Borisov OV (2015) Ideal mixing in multicomponent brushes of branched macromolecules. Macromolecules 48:5614–5622

    Article  Google Scholar 

  21. Borisov OV, Zhulina EB, Leermakers FAM, Ballauff M, Müller AHE (2011) Conformations and solution properties of star-branched polyelectrolytes. Adv Polym Sci 241:1–55

    CAS  Google Scholar 

  22. Borisov OV, Zhulina EB (2018) Conformations of polyelectrolyte molecular brushes: a mean-field theory. J Chem Phys 149:184904–6

    Article  Google Scholar 

  23. Fleer GJ, Cohen Stuart MA, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at Interfaces. Chapman and Hall, London

    Google Scholar 

Download references

Funding

This work was financially supported by Government of Russian Federation (Grant 08-08) and by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie (grant agreement No 823883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Borisov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, O.V., Shavykin, O.V. & Zhulina, E.B. Theory of polyelectrolyte dendrigrafts. Colloid Polym Sci 298, 951–959 (2020). https://doi.org/10.1007/s00396-019-04588-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04588-1

Keywords

Navigation