Skip to main content
Log in

A novel radiation-induced grafting methodology to synthesize stable zerovalent iron nanoparticles at ambient atmospheric conditions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel method was developed to synthesize air-stable zerovalent iron nanoparticles (hereafter nZVI) utilizing a radiation grafting technique. The nZVI were synthesized by borohydrate reduction of FeCl3 and stabilized on a radiation grafted copolymer matrix. Polyacrylic acid (PAA) grafted non-woven polyethylene/polypropylene (NWPE/PP-g-PAA) was used as the copolymer matrix and Co-60 γ-radiation was applied. The nZVI adsorbed NWPE/PP-g-PAA (hereafter nZVI-Ads-NWP) polymer composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrational spectroscopy, scanning electron microscopy (SEM), Mössbauer spectroscopy, proton titrations, and zeta potential techniques. The SEM images showed that PAA was properly grafted onto the NWPE/PP fabric during irradiation and that the nZVI were well dispersed and stabilized on the fabric surface. Vibrational spectroscopy showed supplementary evidence for the proper grafting of PAA onto the base polymer and suggested a monodentate configuration as the primary interaction between the carboxylate groups of PAA and the nZVI surface. XRD, XPS, and Mössbauer analyses revealed core zerovalent iron with a shell mainly consisting of iron oxides. The pHZPC and pHIEP values of nZVI–NaCl suspensions were 7.3. Zeta potential and surface charge data were modeled using the 1-pK Stern layer model with two dissimilar sites for electrolyte and proton binding to account for the observed charge asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fu F, Dionysiou DD, Liu H (2014) J Hazard Mater 267:194–205

    Article  CAS  Google Scholar 

  2. Andreas T, Silke K, Yuri K, Aharon G (2009) Ultrason Sonochem 16:617–621

    Article  Google Scholar 

  3. Dror I, Jacov OM, Cortis A, Berkowitz B (2012) Appl Mater Interfaces 4:3416–3423

    Article  CAS  Google Scholar 

  4. Satapanajaru T, Chompuchan C, Suntornchot P, Pengthamkeerati P (2011) Desalination 266:218–230

    Article  CAS  Google Scholar 

  5. Poursaberi T, Hassanisadi M, Nourmohammadian F (2012) Prog Color Colorants Coat 5:35–40

    Google Scholar 

  6. El-Temsaha YS, Sevcub A, Bobcikova K, Cernik M, Joner EJ (2016) Chemosphere 144:2221–2228

    Article  Google Scholar 

  7. Yang J, Sun H (2015) Water Air Soil Pollut 226:1–15

    Article  CAS  Google Scholar 

  8. Yan W, Herzing AA, Kiely CJ, Zhang WX (2010) J Contam Hydrol 118:96–104

    Article  CAS  Google Scholar 

  9. Zhang X, Lin S, Lu XQ, Chen ZL (2010) Chem Eng J 163:243–248

    Article  CAS  Google Scholar 

  10. Fang Z, Quid X, Huang R, Quid X, Li M (2011) Desalination 280:224–231

    Article  CAS  Google Scholar 

  11. Hwang YH, Kim D–G, Shin H-S (2011) J Hazard Mater 185:1513–1521

    Article  CAS  Google Scholar 

  12. Khalid AME, Eljamal O, Jribi S, Matsunaga N (2016) Chem Eng J 287:367–380

    Article  Google Scholar 

  13. Noubactep C (2015) Water Res 85:114–123

    Article  CAS  Google Scholar 

  14. Sun YP, Li X, Cao J, Zhang W, Wang HP (2006) Adv Colloid Interface Sci 120:47–56

    Article  CAS  Google Scholar 

  15. Ponder SM, Darab JG, Mallouk TE (2000) Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  16. Qui X, Fang Z, Liang B, Gu F, Xu Z (2011) J Hazard Mater 193:70–81

    Article  Google Scholar 

  17. Stefaniuk M, Oleszczuk P, Ok YS (2016) Chem Eng J 287:618–632

    Article  CAS  Google Scholar 

  18. Li A, Tai C, Zhan ZS, Wang YW, Zhang QZ, Jiang GB, Hu JT (2007) Environ Sci Technol 41:6841–6846

    Article  CAS  Google Scholar 

  19. An Y, Li T, Jin Z, Dong M, Li Q, Wang S (2009) Sci Total Environ 407:5465–5470

    Article  CAS  Google Scholar 

  20. Morgada ME, Levy IK, Salomone V, Farías SS, López G, Litter MI (2009) Catal Today 143:261–268

    Article  CAS  Google Scholar 

  21. Machado S, Pinto SL, Grosso JP, Nouws HPA, Albergaria JT, Matos CD (2013) Sci Total Environ 445–446:1–8

    Article  Google Scholar 

  22. Liua HB, Chena TH, Changa DY, Chena D, Liua Y, Heb HP, Yuanb P (2012) Mater Chem Phys 133:205–211

    Article  Google Scholar 

  23. Oropeza S, Corea M, Gómez-Yáñez C, Cruz-Rivera JJ, Clemente MEN (2012) Mater Res Bull 47:1478–1485

    Article  CAS  Google Scholar 

  24. He F, Zhao DY, Liu JC, Roberts CB (2007) Ind Eng Chem Res 46:29–34

    Article  CAS  Google Scholar 

  25. Kassaeea MZ, Motamedia E, Mikhakb A, Rahnemaie R (2011) Chem Eng J 166:490–495

    Article  Google Scholar 

  26. Li L, Fan M, Brown RC, Leeuwen LV (2006) Environ Sci Technol 36:1–13

    Article  Google Scholar 

  27. Barsbay M, Guven O (2013) Polymer 54:4838–4848

    Article  CAS  Google Scholar 

  28. Clough RL (2001) Nucl Inst Methods 185:8–33

    Article  CAS  Google Scholar 

  29. Spinks JWT, Woods RJ (1990) Ions, excited molecules and free radicals. In: Spinks JWT, Woods RJ (eds) An introduction to radiation chemistry. Wiley, New York, pp 127–177

    Google Scholar 

  30. Cirtiu CM, Raychoudhury T, Ghoshal S, Moores A (2011) Colloids Surf A 390:95–104

    Article  CAS  Google Scholar 

  31. Allabaksh MB, Mandal BK, Kesarla MK, Kumar KS, Reddy PS (2010) J Chem Pharm Res 2:67–74

    CAS  Google Scholar 

  32. Yuvakkumar R, Elango V, Rajendran V, Kannan N (2011) Digest J Nano Mater Bio-Struct 6:1771–1776

    Google Scholar 

  33. Madhavi V, Prasad TNVKV, Reddy AVB, Reddy BR, Madhavi G (2013) Spectrochim Acta A 116:17–25

    Article  CAS  Google Scholar 

  34. Maczka E, Jartych E, Kosmulski M (2014) Colloids Surf A 441:326–330

    Article  CAS  Google Scholar 

  35. Ratnayake S, Bandara A, Wijayawardhana RL, Weerasooriya R (2015) Air stable nZVI fabrication method. PGIS Research Congress, 9–10th October, University of Peradeniya, Sri Lanka, pp 22–23

  36. Seah MP, Gilmore IS, Beamson G (1998) Surf Interface Anal 26:642–649

    Article  CAS  Google Scholar 

  37. Westall JC (1982) FITEQL: a computer program for determination of chemical equilibrium constants from experimental data, version 2.0. Chemistry (USA) Report no 82-02. Oregon State University, Corvallis, Oregon

    Google Scholar 

  38. Poeter EP, Hill MC (1999) UCODE—a computer code for universal inverse modeling. Comput Geosci 25:457–462

    Article  Google Scholar 

  39. Lützenkirchen J, Preočanin T, Kallay N (2008) Phys Chem Chem Phys 10:4946–4955

    Article  Google Scholar 

  40. Goel NK, Bhardwaj YK, Manoharan R, Kumar V, Dubey KA, Chaudhari CV, Sabharwal S (2009) e-XPRESS Polym Lett 3:268–278

    Article  CAS  Google Scholar 

  41. Ibrahim SM, El-Salmawi KM, El-Naggar AA (2006) J Appl Polym Sci 102:3240–3245

    Article  CAS  Google Scholar 

  42. Hietala S, Holmberg S, Karjalainen M, Nasman J, Paronen M, Serimaa R, Sundholm F, Vahvaselka S (1997) J Mater Chem 7:721–726

    Article  CAS  Google Scholar 

  43. De Ming F, Peng Y, Tian Hu C, Hong Ping H, Ai Hua Y, Kang Min C, Jian Xi Z, Dong L (2010) Chin Sci Bull 55:1092–1099

    Article  Google Scholar 

  44. Machala L, Zboril R, Gedanken A (2007) J Phys Chem B 111:4003–4018

    Article  CAS  Google Scholar 

  45. Siskova K, Tucek J, Machala L, Otyepkova E, Filip J, Safarova K, Pechousek J, Zboril R (2012) J Nanopart Res 14:1–13

    Article  Google Scholar 

  46. Ji Y (2014) Colloids Surf A 444:1–8

    Article  CAS  Google Scholar 

  47. Parks GA (1965) Chem Rev 65:177–198

    Article  CAS  Google Scholar 

  48. Kosmulski M (2009) Adv Colloid Interface Sci 152:14–25

    Article  CAS  Google Scholar 

  49. Kallay N, Orbic Z, Golic M, Matijevic E (1991) J Phys Chem 95:7028–7032

    Article  CAS  Google Scholar 

  50. Goldberg S, Forster HS, Heick EL (1993) Soil Sci Am J 57:704–708

    Article  CAS  Google Scholar 

  51. Heberling F, Thomas P, Trainor TP, Lützenkirchen J, Eng P, Denecke MA, Bosbach D (2011) J Colloid Interface Sci 354:843–857

    Article  CAS  Google Scholar 

  52. Lützenkirchen J (1998) Environ Sci Technol 32:3149–3154

    Article  Google Scholar 

Download references

Acknowledgments

Sudeera Randenigama is acknowledged for laboratory assistance. The InRC, UoP (Sri Lanka), is acknowledged for SEM facility. RW thanked the National Research Council of Sri Lanka for financial support provided under grant no. NRC-12-130. SR thanked the Sri Lanka Atomic Energy Board and Sri Lanka Gamma Centre for providing the irradiation facilities. Reviewers’ comments enhanced manuscript quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan Weerasooriya.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 162 kb)

ESM 2

(DOCX 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratnayake, S., Schild, D., Maczka, E. et al. A novel radiation-induced grafting methodology to synthesize stable zerovalent iron nanoparticles at ambient atmospheric conditions. Colloid Polym Sci 294, 1557–1569 (2016). https://doi.org/10.1007/s00396-016-3894-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3894-7

Keywords

Navigation