Skip to main content
Log in

Ionic dye–surfactant nanoassemblies: interplay of electrostatics, hydrophobic effect, and π–π stacking

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The interplay of several non-covalent interaction forces is used as key to supramolecular structures. Combining cationic alkyltrimethylammonium bromide surfactants and the divalent anionic azo dye Acid Red 26 (Ar26) as small building blocks in aqueous solution, electrostatic interactions of the oppositely charged building blocks in combination with hydrophobic effect and ππ interactions play a major role in aggregate formation. Static and dynamic light scattering and small-angle neutron scattering (SANS) revealed different sizes of aggregates in the range of 2 nm ≤ R H ≤ 420 nm depending on surfactant length, concentration and of dye to surfactant loading ratio. A strong relationship of assembly size with surfactant concentration has been found, where initial surfactant monomers and micelles influence the aggregate formation differently. The stability of dye–surfactant aggregates which also shows a dependency on surfactant tail length has been related to ζ-potential measurements. Small-angle neutron scattering elucidated that dye–surfactant aggregates possess cylindrical shapes with different aspect ratios. UV/Vis spectroscopy gave information on the dye–dye π–π stacking geometry and extent, while the thermodynamic parameters for micellization and dye–surfactant binding ΔH, ΔG, and ΔS as well as stoichiometry and binding constant obtained by isothermal titration calorimetry revealed insight into the interplay of interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 4
Fig. 9

Similar content being viewed by others

Notes

  1. The weight of peak was found to be 15 % for the first peak and 85 % for the second peak.

  2. The weight of peak was found to be 16 % for the first peak and 84 % for the second peak.

  3. The weight of peak was found to be 65 % for the first peak and 35 % for the second peak.

  4. For aggregates with l = 0.7, dimensions of at least 153 nm in length and 4.7 nm in diameter were found whereas aggregates with l = 0.5 were at least 233 nm in length and 5.6 nm in diameter.

References

  1. Imae T, Kamiya R, Ikeda S (1985) J Colloid Interface Sci 108:215–225

    Article  CAS  Google Scholar 

  2. Aswal VK (2003) J Phys Chem B 107:13323–13328

    Article  CAS  Google Scholar 

  3. Diaz Garcia ME, Sanz-Medel A (1986) Talanta Int J Pure Appl Anal Chem 33:255–264

    CAS  Google Scholar 

  4. Ribeiro ACF, Lobo VMM, Valente AJM, Azevedo EFG, Miguel MG, Burrows HD (2004) Colloid Polym Sci 283:2777–283

    Article  Google Scholar 

  5. Klitzing RV, Espert A, Asnacios A, Hellweg T, Colin A, Langevin D (1999) Colloids Surface A 149:131–140

    Article  CAS  Google Scholar 

  6. Fitzgerald PA, Davey TW, Warr GG (2005) Langmuir 21:7121–7128

    Article  CAS  Google Scholar 

  7. Seliverstova EV, Ibrayev NK, Kudaibergenov SE (2013) Russ J Phys Chem A 87:865–871

    Article  CAS  Google Scholar 

  8. Seliverstova EV, Ibrayev NK, Kudaibergenov SE (2013) J Appl Polym Sci 129:289–295

    Article  CAS  Google Scholar 

  9. Hu W, Ong WL, Ho GW (2010) Colloids Surf A 358:108–114

    Article  CAS  Google Scholar 

  10. Kasture M, Sastry M, Prasad BLV (2010) Chem Phys Lett 484:271–275

    Article  CAS  Google Scholar 

  11. Gradzielski M, Kumar S, Mehta SK (2011) J Colloid Interface Sci 360:497–507

    Article  Google Scholar 

  12. Gradzielski M, Wagner NJ, Schweins R, Prévost S, Heunemann P, Hoffmann I (2011) Langmuir 27:4386–4396

    Article  Google Scholar 

  13. Sidhu J, Bloor DM, Couderc-Azouani S, Penfold J, Holzwarth JF, Wyn-Jones E (2004) Langmuir 20:9320–9328

    Article  CAS  Google Scholar 

  14. Ganeva D, Faul CFJ, Götz C, Sanderson R (2003) Macromolecules 36:2862–2866

    Article  CAS  Google Scholar 

  15. Ganeva D, Antonietti M, Faul CFJ, Sanderson R (2003) Langmuir 19:6561–6565

    Article  CAS  Google Scholar 

  16. Wang Y, Kimura K, Dubin PL (2000) Macromolecules 33:3324–3331

    Article  CAS  Google Scholar 

  17. Xia J, Zhang H, Rigsbee DR, Dubin PL, Shaikh T (1993) Macromolecules 26:2759–2766

    Article  CAS  Google Scholar 

  18. Sudbeck EA, Dubin PL, Curran ME, Skelton I (1991) J Colloid Interface Sci 142:512–517

    Article  CAS  Google Scholar 

  19. Dubin PL, Oteri R (1983) J Colloid Interface Sci 95:453–461

    Article  CAS  Google Scholar 

  20. Antonietti M, Burger C, Effing J (1995) Adv Mater 7:751–753

    Article  CAS  Google Scholar 

  21. Antonietti M, Conrad J, Thünemann A (1994) Macromolecules 27:6007–6011

    Article  CAS  Google Scholar 

  22. Thünemann AF, Lochhaas KH (1998) Langmuir 14:6220–6225

    Article  Google Scholar 

  23. Hoffmann I, Farago B, Schweins R, Falus P, Sharp M, Gradzielski M (2013) EPL 104:28001

    Article  Google Scholar 

  24. Antonietti M, Förster S (2003) Adv Mater 15:1323–1333

    Article  CAS  Google Scholar 

  25. Wang Y, Han P, Xu H, Wang Z, Zhang X, Kabanov A (2009) Langmuir 26:709–715

    Article  CAS  Google Scholar 

  26. Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin Y (2010) J Am Chem Soc 132:9268–9270

    Article  CAS  Google Scholar 

  27. Ren Y, Baumgartner T (2012) Dalton Trans 41:7792–7800

    Article  CAS  Google Scholar 

  28. Babu SS, Prasanthkumar S, Ajayaghosh A (2012) Angew Chem Int Ed 51:1766–1776

    Article  CAS  Google Scholar 

  29. Faul CFJ (2014) Acc Chem Res 47:3428–3438

    Article  CAS  Google Scholar 

  30. Faul CFJ, Antonietti M (2002) Chem Eur J 8:2764–2768

    Article  CAS  Google Scholar 

  31. Priimagi A, Vapaavuori J, Rodriguez FJ, Faul CFJ, Heino MT, Ikkala O, Kauranen M, Kaivola M (2008) Chem Mater 20:6358–6363

    Article  CAS  Google Scholar 

  32. Guan Y, Antonietti M, Faul CFJ (2002) Langmuir 18:5939–5945

    Article  CAS  Google Scholar 

  33. Zakrevskyy Y, Stumpe J, Faul CFJ (2006) Adv Mater 18:2133–2136

    Article  CAS  Google Scholar 

  34. Franke D, Egger CC, Smarsly B, Faul CFJ, Tiddy GJT (2005) Langmuir 21:2704–2712

    Article  CAS  Google Scholar 

  35. Wang Y, Ma N, Wang Z, Zhang X (2007) Angew Chem Int Ed 46:2823–2826

    Article  CAS  Google Scholar 

  36. Wang Y, Li W, Wu L (2009) Langmuir 25:13194–13200

    Article  CAS  Google Scholar 

  37. Štěpánek M, Škvarla J, Uchman M, Procházka K, Angelov B, Kováčik L, Garamus VM, Mantzaridis C, Pispas S (2012) Soft Matter 8:9412–9417

    Article  Google Scholar 

  38. Minard-Basquin C, Weil T, Hohner A, Rädler JO, Müllen K (2003) J Am Chem Soc 125:5832–5838

    Article  CAS  Google Scholar 

  39. Kaper H, Djerdj I, Gross S, Amenitsch H, Antonietti M, Smarsly BM (2015) Phys Chem Chem Phys 17:18138–18145

    Article  CAS  Google Scholar 

  40. Škvarla J, Uchman M, Procházka K, Tošner Z, Garamusc VM, Pispas S, Štěpánek M (2014) Colloids Surf A 443:209–215

    Article  Google Scholar 

  41. Uchman M, Gradzielski M, Angelov B, Tošner Z, Oh J, Chang T, Štěpánek M, Procházka K (2013) Macromolecules 46:2712–2181

    Article  Google Scholar 

  42. Uchman M, Štěpánek M, Prévost S, Angelov B, Bednár J, Appavou M-S, Gradzielski M, Procházka K (2012) Macromolecules 45:6471–6480

    Article  CAS  Google Scholar 

  43. Hajduová J, Procházka K, Šlouf M, Angelov B, Mountrichas G, Pispas S, Stěpánek M (2012) Langmuir 29:5443–5449

    Article  Google Scholar 

  44. Chiappisi L, Simon M, Gradzielski M (2015) ACS Appl Mater Interfaces 7:6139–6145

    Article  CAS  Google Scholar 

  45. Chiappisi L, Gradzielski M (2015) Adv Colloids Interface Sci 220:91–107

    Article  Google Scholar 

  46. Huang J-B, Yan Y, Gao C, Peng Y, Cheng X-H (2013) Colloids Surf A 422:10–18

    Article  Google Scholar 

  47. Zhang T, Liu S, Kurth DG, Faul CFJ (2009) Adv Funct Mater 19:642–652

    Article  CAS  Google Scholar 

  48. Zhang T, Spitz C, Antonietti M, Faul CFJ (2005) Chem Eur J 11:1001–1009

    Article  CAS  Google Scholar 

  49. Willerich I, Gröhn F (2008) Chem Eur J 14:9112–9116

    Article  CAS  Google Scholar 

  50. Willerich I, Ritter H, Gröhn F (2009) J Phys Chem B 113:3339–3354

    Article  CAS  Google Scholar 

  51. Willerich I, Li Y, Gröhn F (2010) J Phys Chem B 114:15466–15476

    Article  CAS  Google Scholar 

  52. Willerich I, Schindler T, Gröhn F (2011) J Phys Chem B 115:9710–9719

    Article  CAS  Google Scholar 

  53. Willerich I, Gröhn F (2011) J Am Chem Soc 133:20341–20356

    Article  CAS  Google Scholar 

  54. Faul CFJ, Antonietti M (2003) Adv Mater 15:673–683

    Article  CAS  Google Scholar 

  55. Willerich I, Gröhn F (2010) Angew Chem Int Ed 49:8104–8108

    Article  CAS  Google Scholar 

  56. Gröhn F (2008) Macromol Chem Phys 209:2295–2301

    Article  Google Scholar 

  57. Bielska M, Sobczyńska A, Prochaska K (2009) Dyes Pigments 80:201–205

    Article  CAS  Google Scholar 

  58. Karukstis KK, Savin DA, Koftus CT, DʼAngelo N (1998) J Colloid Interface Sci 203:157–163

    Article  CAS  Google Scholar 

  59. Huang J-B, Yan Y, Gao C, Peng Y, Cheng X-H (2013) Colloids Surfaces A 422:10–18

    Article  Google Scholar 

  60. Wang D, Long P, Dong R, Hao J (2012) Langmuir 28:14155–14163

    Article  CAS  Google Scholar 

  61. Rudorf S, Rädler JO (2012) J Am Chem Soc 134:11652–11658

    Article  CAS  Google Scholar 

  62. Hohner A, Bayer J, Rädler JO (2006) Eur Phys J E 21:41–48

    Article  CAS  Google Scholar 

  63. Laiho A, Smarsly BM, Faul CFJ, Ikkala O (2008) Adv Funct Mater 18:1890–1897

    Article  CAS  Google Scholar 

  64. Provencher SW (1982) Comput Phys Commun 27:229–242

    Article  Google Scholar 

  65. Glatter O (1977) Acta Phys Austriaca 47:83–102

    Google Scholar 

  66. Glatter O (1977) J Appl Crystallogr 10:415–421

    Article  Google Scholar 

  67. Greaves TL, Dummond C (2008) J Chem Soc Rev 37:1709–1726

    Article  CAS  Google Scholar 

  68. Tadros TF (2005) Applied surfactants: principles and applications. VCH, Weinheim

    Book  Google Scholar 

  69. Aswal VK (2003) Barc Newsl 237:37–42

    CAS  Google Scholar 

  70. Aswal VK, Goyal PS (2004) Praman – J Phys 63:65–72

    Article  CAS  Google Scholar 

  71. Aswal VK, Goyal PS (2002) Chem Phys Lett 357:491–497

    Article  CAS  Google Scholar 

  72. Naskar B, Dan A, Ghosh S, Aswal VK, Moulik PS (2012) J Mol Liq 170:1–10

    Article  CAS  Google Scholar 

  73. Nasiruddin M, Sarwar A (2006) Fluid Phase Equilib 239:166–171

    Article  Google Scholar 

  74. Iampietro DJ, Brasher LL, Kaler EW, Stradner A, Glatter O (1998) J Phys Chem B 102:3105–3113

    Article  CAS  Google Scholar 

  75. Quirion F, Magid LJ (1986) J Phys Chem 90:5435–5441

    Article  CAS  Google Scholar 

  76. Goyal PS, Srinivasa K, Dasannacharya BA, Kelkar VK (1991) Physica B 174:192–195

    Article  CAS  Google Scholar 

  77. Ghai R, Falconer RJ, Collins BM (2012) J Mol Recognit 25:32–52

    Article  CAS  Google Scholar 

  78. Chiad K, Stelzig SH, Gropeanu R, Weil T, Klapper M, Müllen K (2009) Macromolecules 42:7545–7552

    Article  CAS  Google Scholar 

  79. Mosquera V, del Río JM, Attwood D, García M, Jones MN, Prieto G, Suarez MJ, Sarmiento F (1998) J Colloid Interface Sci 206:66–76

    Article  CAS  Google Scholar 

  80. Lah J, Pohar C, Vesnaver G (2000) J Phys Chem B 104:2522–2526

    Article  CAS  Google Scholar 

  81. Helgeson ME, Hodgdon TK, Kaler EW, Wagner NJ (2010) J Colloid Interface Sci 349:1–12

    Article  CAS  Google Scholar 

  82. Bouchemal K, Agnely F, Koffi A, Djabourov M, Ponchel G (2010) J Mol Recognit 23:335–342

    Article  CAS  Google Scholar 

  83. Courtois J, Berret J-F (2010) Langmuir 26:11750–11758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is based upon experiments performed at D11 at Institit Laue Langevin, Grenoble France and at the KWS 2 instrument operated by JCNS at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. We thank Ralf Schweins (ILL) and Henrich Frielinghaus (MLZ) for help with SANS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Gröhn.

Ethics declarations

Funding

This study was funded by the Interdisciplinary Center for Molecular Materials (ICMM, University Erlangen-Nürnberg). The authors gratefully acknowledge the financial support provided by Institit Laue Langevin, Grenoble France and by JCS to perform the neutron scattering measurements at ILL and at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutz, A., Mariani, G. & Gröhn, F. Ionic dye–surfactant nanoassemblies: interplay of electrostatics, hydrophobic effect, and π–π stacking. Colloid Polym Sci 294, 591–606 (2016). https://doi.org/10.1007/s00396-015-3814-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3814-2

Keywords

Navigation