Skip to main content
Log in

Effect of the phenyl ring substituent on stereoselectivity in the ring-opening polymerization of the rac-lactide initiated by salen aluminum complexes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A number of unreported salen aluminum complexes bearing Schiff base ligands starting from (R,R)-1,2-diammoniumcyclohexane mono-(+)-tartrate salt were synthesized. These complexes were characterized by 1H, 13C NMR, and elemental analysis. These complexes were employed as initiators for the ring-opening polymerization (ROP) of L-lactide and rac-lactide. Complex 3 (R = Br) showed the highest activity for the ROP of L-lactide among these complexes, and complex 2 (R = iPr) possessed the highest stereoselectivity for the ROP of rac-lactide among these aluminum isopropoxides. The kinetics studies of the polymerization employed complex 2 as initiator indicated that the polymerization rate was first-ordered in lactide and initiator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thomas CM (2010) Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem Soc Rev 39:165–173

    Article  CAS  Google Scholar 

  2. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  3. Thomas RM, Widger PC, Ahmed SM, Jeske RC, Hirahata W, Lobkovsky EB, Coates GW (2010) Enantioselective epoxide polymerization using a bimetallic cobalt catalyst. J Am Chem Soc 132:16520–16525

    Article  CAS  Google Scholar 

  4. Herman ES, Lyon LA (2015) Polyelectrolyte exchange and diffusion in microgel multilayer thin films. Colloid Polym Sci. doi:https://doi.org/10.1007/s00396-015-3547-2

    Article  CAS  Google Scholar 

  5. Kim J, Park Y, Brown AC, Lyon LA (2014) Direct observation of ligand-induced receptor dimerization with a bioresponsive hydroge. RSC Adv 4:65173–65175

    Article  CAS  Google Scholar 

  6. Gogolewski S, Pennings AJ (1983) Resorbable materials of poly(L-lactide). Colloid Polym Sci 261:477–484

    Article  CAS  Google Scholar 

  7. Dove AP, Gibson VC, Marshall EL, Rzepa HS, White AJP, Williams DJ (2006) Synthetic, structural, mechanistic, and computational studies on single-site β-diketiminate Tin(II) initiators for the polymerization of rac-lactide. J Am Chem Soc 128:9834–9843

    Article  CAS  Google Scholar 

  8. Alaaeddine A, Thomas CM, Roisnel T, Carpentier J-F (2009) Aluminum and yttrium complexes of an unsymmetrical mixed fluorous alkoxy/phenoxy-diimino ligand: synthesis, structure, and ring-opening polymerization catalysis. Organometallics 28:1469–1475

    Article  CAS  Google Scholar 

  9. Ma HY, Melillo G, Oliva L, Spaniol TP, Englert U, Okuda J (2010) Aluminium alkyl complexes supported by [OSSO] type bisphenolato ligands: synthesis, characterization and living polymerization of rac-lactide. Dalton Trans 721–727

  10. Wu JC, Pan XB, Tang N, Lin C-C (2007) Synthesis, characterization of aluminum complexes and the application in ring-opening polymerization of L-lactide. Eur Polym J 43:5040–5046

    Article  CAS  Google Scholar 

  11. Zhang WJ, Wang YH, Sun W-H, Wang L, Redshaw C (2012) Dimethylaluminium aldiminophenolates: synthesis, characterization and ring-opening polymerization behavior towards lactides. Dalton Trans 41:11587–11596

    Article  CAS  Google Scholar 

  12. Chisholm MH, Navarro-Llobet D, Simonsick WJ Jr (2001) A comparative study in the ring-opening polymerization of lactides and propylene oxide. Macromolecules 34:8851–8857

    Article  CAS  Google Scholar 

  13. Labourdette G, Lee DJ, Patrick BO, Ezhova MB, Mehrkhodavandi P (2009) Unusually stable chiral ethyl zinc complexes: reactivity and polymerization of lactide. Organometallics 28:1309–1319

    Article  CAS  Google Scholar 

  14. Darensbourg DJ, Karroonnirun O (2010) Ring-opening polymerization of L-lactide and ε-caprolactone utilizing biocompatible zinc catalysts. Macromolecules 43:8880–8886

    Article  CAS  Google Scholar 

  15. Yang N, Xin L, Gao W, Zhang J, Luo X, Liu X, Mu Y (2012) Al and Zn complexes bearing N,N,N-tridentate Q uinolinyl anilido-imine ligands: synthesis, characterization and catalysis on L-lactide polymerization. Dalton Trans 41:11454–11463

    Article  CAS  Google Scholar 

  16. Gao B, Duan RL, Pang X, Li X, Qu Z, Shao H, Wang X, Chen XS (2013) Zinc complexes containing asymmetrical N,N,O-tridentate ligands and their application in lactide polymerization. Dalton Trans 42:16334–16342

    Article  CAS  Google Scholar 

  17. Wu J-C, Chen Y-Z, Hung W-C, Lin C-C (2008) Preparation, characterization, and catalytic studies of magnesium phenoxides: highly active initiators for ring-opening polymerization of L-lactide. Organometallics 27:4970–4978

    Article  CAS  Google Scholar 

  18. Gao B, Zhao D, Li X, Cui Y, Duan R, Pang X (2015) Magnesium complexes bearing N,N-bidentate phenanthrene derivatives for the stereoselective ring-opening polymerization of rac-lactides. RSC Adv 5:440–447

    Article  CAS  Google Scholar 

  19. Sánchez-Barba LF, Hughes DL, Humphrey SM, Bochmann M (2005) New bis(allyl)(diketiminato) and tris(allyl) lanthanide complexes and their reactivity in the polymerization of polar monomers. Organometallics 24:3792–3799

    Article  Google Scholar 

  20. Mcguinness DS, Marshall EL, Gibson VC, Steed JW (2003) Anionic iron (II) alkoxides as initiators for the controlled ring-opening polymerization of lactide. J Polym Sci Part A: Polym Chem 41:3798–3803

    Article  CAS  Google Scholar 

  21. Kim Y, Verkade JG (2002) Novel titanatranes with different ring sizes: syntheses, structures, and lactide polymerization catalytic capabilities. Organometallics 21:2395–2399

    Article  CAS  Google Scholar 

  22. Takashima Y, Nakayama Y, Watanabe K, Itono T, Ueyama N, Nakamura A, Yasuda H, Harada A, Okuda J (2002) Polymerizations of cyclic esters catalyzed by titanium complexes having chalcogen-bridged chelating diaryloxo ligands. Macromolecules 35:7538–7544

    Article  CAS  Google Scholar 

  23. Takeuchi D, Aida T (2000) Sequential cationic and anionic polymerizations by triflate complexes of bulky titanium bisphenolates: one-pot synthesis of polyoxetane–poly(ε-caprolactone) block copolymer. Macromolecules 33:4607–4609

    Article  CAS  Google Scholar 

  24. Gao B, Li X, Duan RL, Pang X (2015) Titanium complexes with octahedral geometry chelated by salen ligands adoptingβ-cis configuration for the ring-opening polymerization of lactide. New J Chem 39:2404–2408

    Article  CAS  Google Scholar 

  25. Tsai CY, Du HC, Chang JC, Huang BH, Ko BT, Lin C-C (2014) Ring-opening polymerization of cyclic esters initiated by zirconium, titanium and yttrium complexes. RSC Adv 4:14527–14537

    Article  CAS  Google Scholar 

  26. Zhao N, Hou G, Deng X, Zi GF, Walter MD (2014) Group 4 metal complexes with new chiral pincer NHC-ligands: synthesis, structure and catalytic activity. Dalton Trans 43:8261–8272

    Article  CAS  Google Scholar 

  27. Douglas AF, Patrick BO, Mehrkhodavandi PA (2008) Highly active chiral indium catalyst for living lactide polymerization. Angew Chem Int Ed 47:2290–2293

    Article  CAS  Google Scholar 

  28. Liu B, Roisnel T, Maron L, Carpentier J-F, Sarazin Y (2013) Discrete divalent rare-earth cationic ROP catalysts: ligand-dependent redox behavior and discrepancies with alkaline-earth analogues in a ligand-assisted activated monomer mechanism. Chem Eur J 19:3986–3994

    Article  CAS  Google Scholar 

  29. Marks SJ, Heck G, Habicht MH, OñaBurgos P, Feldmann C, Roesky PW (2012) [Ln(BH4)2(THF)2] (Ln = Eu, Yb)—a highly luminescent material. Synthesis, properties, reactivity, and NMR studies. J Am Chem Soc 134:16983–16986

    Article  CAS  Google Scholar 

  30. Wang J, Yao Y, Zhang Y, Shen Q (2009) Bridged Bis(amidinate) ytterbium alkoxide and phenoxide: syntheses, structures, and their high activity for controlled polymerization of L-lactide and ε-caprolactone. Inorg Chem 48:744–751

    Article  CAS  Google Scholar 

  31. Liu X, Shang X, Tan T, Hu N, Pei F, Cui D, Chen XS, Jing X (2007) Achiral lanthanide alkyl complexes bearing N,O multidentate ligands. Synthesis and catalysis of highly heteroselective ring-opening polymerization of rac-lactide. Organometallics 26:2747–2757

    Article  Google Scholar 

  32. Nie K, Gu XY, Yao YM, Zhang Y, Shen Q (2010) Synthesis and characterization of amine bridged bis(phenolate) lanthanide aryloxides and their application in the polymerization of lactide. Dalton Trans 39:6832–6840

    Article  CAS  Google Scholar 

  33. Ma HY, Spaniol TP, Okuda J (2008) Rare-earth metal complexes supported by 1, ω-dithiaalkanediyl-bridged Bis(phenolato) ligands: synthesis, structure, and heteroselective ring-opening polymerization of rac-lactide. Inorg Chem 47:3328–3339

    Article  CAS  Google Scholar 

  34. Kadota J, Pavlović D, Hirano H, Okada A, Agari Y, Bibal B, Deffieux A, Peruch F (2014) Controlled bulk polymerization of L-lactide and lactones by dual activation with organo-catalytic systems. RSC Adv 4:14725–14732

    Article  CAS  Google Scholar 

  35. Sosnowski S, Slomkowski S, Lorenc A, Kricheldorf HR (2002) Mechanism of dispersion polymerization of L-lactide initiated with 2,2-dibutyl-2-stanna-1,3-dioxepane. Colloid Polym Sci 280:107–115

    Article  CAS  Google Scholar 

  36. Gross RA, Kumar A, Kalra B (2001) Polymer synthesis by in vitro enzyme catalysis. Chem Rev 101:2097–2124

    Article  CAS  Google Scholar 

  37. Jhurry D, Bhaw-Luximon A, Spassky N (2001) Synthesis of polylactides by new aluminium Schiff base complexes. Macromol Symp 175:67–79

    Article  CAS  Google Scholar 

  38. Abedini A, Meng F, Raleigh DP (2007) A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent fibrillization inhibitor. J Am Chem Soc 129:11330–11331

    Article  Google Scholar 

  39. Robert C, Montigny F, Thomas CM (2011) Tandem synthesis of alternating polyesters from renewable resources. Nat Commun 2:586. doi:https://doi.org/10.1038/ncomms1596

    Article  Google Scholar 

  40. Ovitt TM, Coates GW (2012) Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms. J Am Chem Soc 124:1316–1326

    Article  Google Scholar 

  41. Radano CP, Baker GL, Smith MR (2000) Stereoselective polymerization of a racemic monomer with a racemic catalyst: direct preparation of the polylactic acid stereocomplex from racemic lactide. J Am Chem Soc 122:1552–1553

    Article  CAS  Google Scholar 

  42. Zhong ZY, Dijkstra PJ, Feijen J (2002) [(Salen)Al]-mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: synthesis of highly isotactic polylactide stereocopolymers from racemic d, l-lactide. Angew Chem Int Ed 41:4510–4513

    Article  CAS  Google Scholar 

  43. Zhong ZY, Dijkstra PJ, Feijen J (2003) Controlled and stereoselective polymerization of lactide: kinetics, selectivity, and microstructures. J Am Chem Soc 125:11291–11298

    Article  CAS  Google Scholar 

  44. Maudoux N, Roisnel T, Dorcet V, Carpentier J-F, Sarazin Y (2014) Chiral (1,2)-diphenylethylene-salen complexes of triel metals: coordination patterns and mechanistic considerations in the isoselective ROP of lactide. Chem Eur J 20:6131–6147

    Article  CAS  Google Scholar 

  45. Hormnirun P, Marshall EL, Gibson VC, Pugh RI, White AJP (2006) Study of ligand substituent effects on the rate and stereoselectivity of lactide polymerization using aluminum salen-type initiators. Proc Natl Acad Sci 103:15343–15348

    Article  CAS  Google Scholar 

  46. Florczak M, Libizowski J, Mosnacek J, Duda A, Penczek S (2007) L, L-lactide and ε-caprolactone block copolymers by a ‘poly(L, L-lactide) block first’ route. Macromol Rapid Commun 28:1385–1391

    Article  CAS  Google Scholar 

  47. Gao B, Duan RL, Pang X, Li X, Qu Z, Tang ZH, Zhuang XL, Chen XS (2013) Stereoselective ring-opening polymerisation of rac-lactides. Catalyzed by aluminum hemi-salen complexes. Organometallics 32:5435–5444

    Article  CAS  Google Scholar 

  48. Tang ZH, Chen XS, Pang X, Yang YK, Zhang XF, Jing XB (2004) Stereoselective polymerization of rac-lactide using a monoethylaluminum schiff base complex. Biomacromolecules 5:965–970

    Article  CAS  Google Scholar 

  49. Pang X, Du H, Chen XS, Wang X, Jing XB (2008) Enolic Schiff base aluminum complexes and their catalytic stereoselective polymerization of racemic lactide. Chem Eur J 14:3126–3136

    Article  CAS  Google Scholar 

  50. Pang X, Duan RL, Li X, Gao B, Sun Z, Wang XH, Chen XS (2014) Bimetallic Schiff-base aluminum complexes based on pentaerythrityl tetramine and their stereoselective polymerization of racemic lactide. RSC Adv 4:22561–22566

    Article  CAS  Google Scholar 

  51. Gao B, Li X, Duan R, Duan Q, Li Y, Pang X, Zhuang H, Chen XS (2015) Hemi-salen aluminum catalysts bearing N, N, otridentate type binaphthyl-Schiff-base ligands for the living ring-opening polymerisation of lactide. RSC Adv 5:29412–29419

    Article  CAS  Google Scholar 

  52. Larrow JF, Jacobsen EN, Gao Y, Hong Y, Nie X, Zepp CM (1994) A practical method for the large-scale preparation of [N, N′-bis(3,5-di-tertbutylsalicylidene)-1,2-cyclohexane-diaminato (2-)]manganese (III) chloride, a highly enantioselective epoxidation catalyst. J Org Chem 59:1939–1942

    Article  CAS  Google Scholar 

  53. Baran J, Duda A, Kowalski A, Szymanski R, Penczek S (1997) Intermolecular chain transfer to polymer with chain scission: general treatment and determination of k,/kt, in L,L-lactide polymerization. Macromol Rapid Commun 18:325–333

    Article  CAS  Google Scholar 

  54. Cameron PA, Jhurry D, Gibson VC, Andrew J, White PD, Williams J, Williams S (1999) Controlled polymerization of lactides at ambient temperature using [5-Cl-salen]AlOMe. Macromol Rapid Commun 20:616–618

    Article  CAS  Google Scholar 

  55. Bhaw-Luximon A, Jhurry D, Spassky N (2000) Controlled polymerization of DL-lactide using a Schiff’s base Al-alkoxide initiator derived from 2-hydroxyacetophenone. Polymer Bulletin 44:31–38

    Article  CAS  Google Scholar 

  56. Thakur KAM, Kean RT, Hall ES, Kolstad JJ, Lingren TA, Doscotch MA, Siepmann JI, Munson EJ (1997) High-resolution 13C and 1H solution NMR study of poly(lactide). Macromolecules 30:2422–2428

    Article  CAS  Google Scholar 

  57. Pm is the probability of meso linkages: [mmm] = Pm 2 + (1 − Pm)Pm/2, [mmr] = [rmm] = (1 − Pm)Pm/2, [rmr] = (1 − Pm)2/2, and [mrm] = [(1 − Pm)2 + Pm(1 − Pm)]/2. See Chamberlain B, Cheng MM, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW (2001) Polymerization of lactide with zinc and magnesium β-diiminate complexes: stereocontrol and mechanism. J Am Chem Soc 123:3229–3238

  58. Zhong ZY, Dijkstra PJ, Birg C, Westerhausen M, Feijen J (2001) A novel and versatile calcium-based initiator system for the ring-opening polymerization of cyclic esters. Macromolecules 34:3863–3868

    Article  CAS  Google Scholar 

  59. Pietrangelo A, Knight SC, Gupta AK, Yao LJ, Hillmyer MA, Tolman WB (2010) Mechanistic study of the stereoselective polymerization of D, L-lactide using indium(III) halides. J Am Chem Soc 132:11649–11657

    Article  CAS  Google Scholar 

  60. Tai W-J, Li C-Y, Lin P, Li J-Y, Chen M-J, Ko B-T (2012) Synthesis and characterization of aluminum complexes based on amino-benzotriazole phenoxide ligand: luminescent properties and catalysis for ring-opening polymerization. Appl Organometal Chem 26:518–527

    Article  CAS  Google Scholar 

  61. Balasanthiran V, Chatterjee C, Chisholm MH, Harrold ND, RajanBabu TV, Warren GA (2015) Coupling of propylene oxide and lactide at a porphyrin chromium(III) center. J Am Chem Soc 137:1786–1789

    Article  CAS  Google Scholar 

  62. Kowalski A, Duda A, Penczek S (1998) Polymerization of L, L-lactide initiated by aluminum isopropoxide trimer or tetramer. Macromolecules 31:2114–2122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant number 21204082); the Project for Science and Technology Development of Jilin Science & Technology Department, Jilin province, China (grant number 20140204017GX); the Science and Technology Bureau of Changchun City, China (grant number 2013060); and Training Programs of Innovation and Entrepreneurship for Undergraduates (No. 2015X094).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Gao or Qian Duan.

Additional information

Zuwang Wen and Dongni Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1826 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Li, D., Qi, J. et al. Effect of the phenyl ring substituent on stereoselectivity in the ring-opening polymerization of the rac-lactide initiated by salen aluminum complexes. Colloid Polym Sci 293, 3449–3457 (2015). https://doi.org/10.1007/s00396-015-3720-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3720-7

Keywords

Navigation