Skip to main content
Log in

The role of the soft phase in the hardening effect and the rate dependence of the ultimate physico-mechanical properties of urethane-containing segmented elastomers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Segmented urethane elastomers (SUE) with polytetramethylene oxide soft segments, toluene diisocyanate (TDI)/methylene-bis-o-chloroaniline (MOCA) hard segments, TDI/ MOCA + TDI/butanediol (BD) and TDI/MOCA + isophorone diisocyanate/MOCA mixed segments were investigated. A microphase separation in SUE was adjusted by the variation in the composition of the hard segments or preparation conditions. It was shown that non-linear relationships of SUE’s thermo-mechanical, thermal and mechanical properties on the composition of hard segments, including an extremal one, were typical. Basic dependence types of SUE strength on the stretching rates (direct, reciprocal, extremal) were determined at various stages of the elastomer structure evolution. A significant increase in the SUE strength was found at a low degree of microphase separation. A strong effect of interaction in the soft phase on the physicochemical properties of block copolymers was shown. An improvement of the miscibility between hard and soft phases and a loose structure of the hard phase promote a stabilisation of the strength value in a wide range of the stretching rates. The effect of the strength increase equals to 30–50 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Randall D, Lee S (2003) The polyurethanes book. Wiley, New York

    Google Scholar 

  2. Hepburn C (1992) Polyurethane elastomers. Elsevier Applied Science, London and New York

    Book  Google Scholar 

  3. Petrović ZS, Ferguson J (1991) Polyurethane elastomers. Prog Polym Sci 16:695. doi:10.1016/0079-6700(91)90011-9

    Article  Google Scholar 

  4. Lamba NMK, Woodhouse KA, Cooper SL (1998) Polyurethanes in biomedical applications. CRC Press, Boca Raton

    Google Scholar 

  5. Bagdi K, Molnar K, Wacha A, Bota A, Pukánszky B (2011) Hierarchical structure of phase-separated segmented polyurethane elastomers and its effect on properties. Polym Int 60:529. doi:10.1002/pi.3003

    Article  CAS  Google Scholar 

  6. Fedoseev MS, Devyaterikov DM, Rybina GV, Meshechkina AE (2013) Curing of oligo(diene-isoprene-urethane-epoxy) oligomer in the presence of an active plasticizer, 1,2-epoxycyclopentane, and of its adducts with imidazoles. Russ J Appl Chem 86:1441. doi:10.1134/S1070427213090217

    Article  CAS  Google Scholar 

  7. Unal S, Yilgor I, Yilgor E, Sheth JP, Wilkes GL, Long TE (2004) A new generation of highly branched polymers: hyperbranched, segmented poly(urethane urea) elastomers. Macromolecules 37:7081. doi:10.1021/ma049472e

    Article  CAS  Google Scholar 

  8. Volkova ER, Tereshatov VV, Vnutskikh ZA (2010) Formation of polyurethane structural materials based on mixtures of oligoethers with different reactivities. Russ J Appl Chem 83:1372. doi:10.1134/S1070427210080082

    Article  CAS  Google Scholar 

  9. Zhao CT, de Pinho MN (1999) Design of polypropylene oxide/ polybutadiene bi-soft segment urethane/urea polymer for pervaporation membranes. Polymer 40:6089. doi:10.1016/S0032-3861(98)00833-7

    Article  CAS  Google Scholar 

  10. Hong Y, Guan J, Rujimoto KL, Hashizume R, Pelinescu AL, Wagner WR (2010) Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31:4249. doi:10.1016/j.biomaterials.2010.02.005

    Article  CAS  Google Scholar 

  11. Buist JM (1978) Developments in polyurethane-1. Applied Science Publishers, London

    Google Scholar 

  12. Wang CB, Cooper SL (1983) Morphology and properties of segmented polyether polyurethaneureas. Macromolecules 16:775. doi:10.1021/ma00239a014

    Article  CAS  Google Scholar 

  13. Bagdi K, Molnár K, Sajó I, Pukánszky B (2011) Specific interactions, structure and properties in segmented polyurethane elastomers. Expr Polymer Lett 5:417. doi:10.3144/expresspolymlett.2011.41

    Article  CAS  Google Scholar 

  14. Ahn TO, Jung SU, Jeong HM, Lee SW (1994) The properties of polyurethanes with mixed chain extenders and mixed soft segments. J Appl Polym Sci 51:43. doi:10.1002/app.1994.070510105

    Article  CAS  Google Scholar 

  15. Makarova MA, Tereshatov VV, Strel’nikov VN (2010) Behavior in a humid medium of segmented polyurethane-ureas with dissimilar thermodynamically compatible and incompatible flexible blocks. Russ J Appl Chem 83:1360. doi:10.1134/S1070427210080069

    Article  CAS  Google Scholar 

  16. Tereshatov VV, Tereshatova EN, Makarova MA, Tereshatov SV (2002) Influence of chemical structure and composition of mixed soft segments on the properties of elastomers with urethane–urea hard blocks. Polym Sci 44:275

    Google Scholar 

  17. Ishihara H (1984) Studies on segmented polyurethane-urea elastomers: structure and properties segmented polyurethane–urea having the binary segment components. J Macromol Sci Phys 22:763

    Article  Google Scholar 

  18. Tereshatov VV, Strel’nikov VN, Makarova MA, Senichev VY, Volkova ER (2010) Structure and properties of segmented polyurethane-ureas with dissimilar soft blocks. J Appl Chem 83:1380. doi:10.1134/S1070427210080094

    CAS  Google Scholar 

  19. Mattia J, Painter P (2007) A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules 40:1546. doi:10.1021/ma0626362

    Article  CAS  Google Scholar 

  20. Arun A, Gaymans R (2008) Tri-block copolymers with mono-disperse crystallizable diamide segments: synthesis, analysis and rheological properties. Polymer 49:2461. doi:10.1016/j.polymer.2008.03.049

    Article  CAS  Google Scholar 

  21. Yamamoto T, Shibayama M, Nomura S (1989) Structure and properties of fatigued segmented poly(urethaneurea)s III. Quantitative-analyses of hydrogen-bond. Polymer J 21:895. doi:10.1295/polymj.21.895

    Article  CAS  Google Scholar 

  22. Lee HS, Yoo SR, Seo SW (1999) Domain and segmental deformation behavior of thermoplastic elastomers using synchrotron SAXS and FTIR methods. J Polym Sci Polym Phys 37:3233

    Article  CAS  Google Scholar 

  23. Christenson EM, Anderson JM, Hiltner A, Baer E (2005) Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer 46:11744. doi:10.1016/j.polymer.2005.08.083

    Article  CAS  Google Scholar 

  24. Kontou E, Spathis G, Niaounakis M, Kefalas V (1990) Physical and chemical cross-linking effects in polyurethane elastomers. Colloid Polym Sci 268:636. doi:10.1007/BF01410405

    Article  CAS  Google Scholar 

  25. Tereshatov VV, Tereshatova EN, Volkova ER (1995) Two types of physical networks in cross-linked segmented polyurethanes. Polymer Sci 37:1181

    Google Scholar 

  26. Smith TL (1974) Tensile strength of polyurethane and other elastomeric block copolymers. J Polym Sci Polym Phys 12:1825. doi:10.1002/pol.1974.180120907

    Article  CAS  Google Scholar 

  27. Yeh F, Hsiao BS, Sauer BB, Michel S, Siesler HW (2003) In-situ studies of structure development during deformation of a segmented poly(urethane-urea) elastomer. Macromolecules 36:1940. doi:10.1021/ma0214456

    Article  CAS  Google Scholar 

  28. Speckhard TA, Cooper SL (1986) Ultimate tensile properties of segmented polyurethane elastomers: factors leading to reduced properties for polyurethanes based on nonpolar soft segments. Rubber Chem Technol 59:405. doi:10.5254/1.3538208

    Article  CAS  Google Scholar 

  29. Bonart R, Hoffmann K (1982) Orientation behavior of segmented polyurethanes as a function of foil preparation and the moment of determining the orientation. Colloid Polym Sci 260:268. doi:10.1007/BF01447964

    Article  CAS  Google Scholar 

  30. Müller-Riederer G, Bonart R (1977) Orientierungsvorgänge bei der dehnung von polyurethan-elastomeren. Progr Colloid Polymer Sci 62:99. doi:10.1007/BFb0117099

    Article  Google Scholar 

  31. Paiksung CS, Smith TW, Sung NH (1980) Properties of polyether poly(urethaneureas) based on 2,4-toluene diisocyanate. 2. Infrared and mechanical studies. Macromolecules 13:117. doi:10.1021/ma60073a023

    Article  Google Scholar 

  32. Tereshatov VV, Makarova MA, Senichev VY, Slobodinyuk AI (2012) Interrelationship between ultimate mechanical properties of variously structured polyurethanes and poly(urethane urea)s and stretching rate thereof. Colloid Polym Sci 290:641. doi:10.1007/s00396-011-2585-7

    Article  CAS  Google Scholar 

  33. Zhang S, Ren Z, He S, Zhu Y, Zhu C (2007) FTIR spectroscopic characterization of polyurethane-urea model hard segments (PUUMHS) based on three diamine chain extenders. Spectrochim Acta A 66:188. doi:10.1016/j.saa.2006.02.041

    Article  Google Scholar 

  34. Cluff EF, Gladding EK, Pariser R (1960) A new method for measuring the degree of cross-linking in elastomers. Polymer Sci 45:341. doi:10.1002/pol.1960.1204514605

    Article  CAS  Google Scholar 

  35. Tereshatov VV (1995) Variation of network parameters in segmented polyurethanes induced by tensile drawing. Polym Sci 37A:946

    Google Scholar 

  36. Luo N, Wang DN, Ying S (1996) Hydrogen bonding between urethane and urea: band assignment for the carbonyl region of FTIR spectrum. Polymer 37:3045

    Article  Google Scholar 

  37. Luo N, Wang DN, Ying SK (1997) Hydrogen-bonding properties of segmented polyether poly(urethane urea) copolymer. Macromolecules 30:4405

    Article  Google Scholar 

  38. Hofmann GR, Sevegney MS, Kannan RM (2004) A rheo-optical FTIR spectrometer for investigating molecular orientation and viscoelastic behavior in polymers. Int J Polym Anal Charact 9:245. doi:10.1080/10236660490920237

    Article  CAS  Google Scholar 

  39. Wang SK, Sung CS (2002) Spectroscopic characterization of model urea, urethane compound, and diamine extender for polyurethane-urea. Macromolecules 35:877. doi:10.1021/ma011316

    Article  CAS  Google Scholar 

  40. Seymour RW, Estes GM, Cooper SL (1970) Infrared studies of segmented polyurethane elastomers. I. Hydrogen bonding. Macromolecules 3:579. doi:10.1021/ma60017a021

    Article  Google Scholar 

  41. Tereshatov VV, Makarova MA, Tereshatova EN (2004) Abnormal thermal and mechanical behavior of plasticized polyurethaneureas. Polym Sci 46:1332

    Google Scholar 

  42. Tereshatov VV, Senichev VY (1995) Stress–strain behavior of cross-linked polybutadiene urethanes. Polym Sci Ser A 37:702

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Russian Foundation for Basic Research, the Government of Perm Region (project 13-03-96000) and the Ural Branch of the Russian Academy of Sciences (project 12-T-3-1005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Senichev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshatov, V.V., Makarova, M.A., Senichev, V.Y. et al. The role of the soft phase in the hardening effect and the rate dependence of the ultimate physico-mechanical properties of urethane-containing segmented elastomers. Colloid Polym Sci 293, 153–164 (2015). https://doi.org/10.1007/s00396-014-3395-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3395-5

Keywords

Navigation