Skip to main content
Log in

NMR study of interphase structure in layered polymer morphologies with mobility contrast: disorder and confinement effects vs. dynamic heterogeneities

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanostructured multiphase polymers with mobility contrast, such as semicrystalline polymers or block copolymers with two separate glass transitions, are usually characterized by the presence of an interphase material with in-between mobility. This interphase is often assumed to form a contiguous layer between the adjacent main phases, possibly exhibiting a mobility gradient. Here, we present evidence from proton low-field NMR experiments based upon the spin diffusion effect that suggests less trivial possible arrangements. A numerical analysis of the NMR data based upon a 2D lattice model demonstrates that a part of the mobile phase must be in rather direct contact with the rigid phase. Tentatively, we assume an island-like distribution of the interphase, or its location within the rigid phase, with sizes on the scale of a few nanometers. We observe qualitatively the same phenomenon in a semicrystalline polymer, poly(ε-caprolactone), and in a lamellar poly(styrene)-poly(butadiene) block copolymer, suggesting that the phenomenon has some degree of universality. We hypothesize that the non-trivial location of the interphase results from either a higher than one-dimensional constraint imposed by the surrounding rigid phase and disorder effects arising from local roughness or thickness distributions or from the intrinsic dynamic heterogeneity length scale of material close to the glass transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Strobl G (2007) The physics of polymers. Springer, Berlin

    Google Scholar 

  2. Wunderlich B (2003) Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450

    Article  CAS  Google Scholar 

  3. Schick C, Wurm A, Mohamed A (2001) Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid Polym Sci 279:800–806

    Article  CAS  Google Scholar 

  4. Mano JF, Ribelles JLG, Alves NM, Sanchez MS (2005) Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer 46:8258–8265

    Article  CAS  Google Scholar 

  5. Jonas A, Legras R (1993) Relaxation between PEEK semicrystalline morphology and its subglass relaxations and glass-transition. Macromolecules 26:813–824

    Article  CAS  Google Scholar 

  6. Iannace S, Nicolais L (1997) Isothermal crystallization and chain mobility of poly(L-lactide). J Appl Polym Sci 64:911–919

    Article  CAS  Google Scholar 

  7. McBrierty VJ, Packer KJ (1993) Nuclear magnetic resonance in solid polymers. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Kitamaru R, Horii F (1978) NMR approach to the phase structure of linear polyethylene. Adv Polym Sci 26:137

    Article  CAS  Google Scholar 

  9. Hansen EW, Kristiansen PE, Pedersen B (1998) Crystallinity of polyethylene derived from solid-state proton NMR free induction decay. J Phys Chem B 102:5444–5450

    Article  CAS  Google Scholar 

  10. Litvinov VM, Penning JP (2004) Phase composition and molecular mobility in nylon 6 fibers as studied by proton NMR transverse magnetization relaxation. Macromol Chem Phys 205:1721–1734

    Article  CAS  Google Scholar 

  11. Yao Y-F, Graf R, Spiess HW, Rastogi S (2008) Restricted segmental mobility can facilitate medium-range chain diffusion: a NMR study of morphological influence on chain dynamics of polyethylene. Macromolecules 41:2514–2519

    Article  CAS  Google Scholar 

  12. Saalwächter K, Thomann Y, Hasenhindl A, Schneider H (2008) Direct observation of interphase composition in block copolymers. Macromolecules 41:9187–9191

    Article  Google Scholar 

  13. Hashimoto T, Shibayama M, Kawai H (1980) Domain-boundary structure of styrene-isoprene block copolymer films cast from solution. 4. Molecular-weight dependence of lamellar microdomains. Macromolecules 13:1237–1247

    Article  CAS  Google Scholar 

  14. Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF (1990) The morphology of symmetric diblock copolymers as revealed by neutron reflectivity. J Chem Phys 92:5677–5691

    Article  CAS  Google Scholar 

  15. Noro A, Okuda M, Odamaki F, Kawaguchi D, Torikai N, Takano A, Matsuhita Y (2006) Chain localization and interfacial thickness in microphase-separated structures of block copolymers with variable composition distributions. Macromolecules 39:7654–7661

    Article  CAS  Google Scholar 

  16. Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic, London

    Google Scholar 

  17. Havens JR, VanderHart DL (1985) Morphology of poly(ethylene terephthalate) fibers as studied by multiple-pulse 1H NMR. Macromolecules 18:1663–1676

    Article  CAS  Google Scholar 

  18. Clauss J, Schmidt-Rohr K, Spiess HW (1994) Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polym 44:1–17

    Article  Google Scholar 

  19. VanderHart DL, McFadden GB (1996) Some perspectives on the interpretation of proton NMR spin diffusion data in terms of polymer morphologies. Sol State NMR 7:45–66

    Article  CAS  Google Scholar 

  20. Sadler DM, Keller A (1970) Polyethylene crystals with dislocation networks; their origin structure and relevance to polymer crystallization (part I). Kolloid Z Z Polym 239:641–654

    Article  CAS  Google Scholar 

  21. Sadler DM, Keller A (1970) Polyethylene crystals with dislocation networks; their origin structure and relevance to polymer crystallization (part II). Kolloid Z Z Polym 242:1082–1092

    Article  Google Scholar 

  22. Sadler DM (1983) Roughness of growth faces of polymer crystals: evidence from morphology and implications for growth mechanisms and types of folding. Polymer 24:1401–1409

    Article  CAS  Google Scholar 

  23. Sadler DM, Gilmer GH (1984) A model for chain folding in polymer crystals: rough growth faces are consistent with the observed growth rates. Polymer 25:1446–1452

    Article  CAS  Google Scholar 

  24. Sadler DM, Wills HH (1985) Rough-surface crystallization: some applications to poly(ethylene oxide). J Polym Sci 23:1533–1554

    CAS  Google Scholar 

  25. Sadler DM (1987) New explanation for chain folding in polymers. Nature 326:174–177

    Article  CAS  Google Scholar 

  26. Mullin N, Hobbs JK (2011) Direct imaging of polyethylene films at single-chain resolution with torsional tapping atomic force microscopy. Phys Rev Lett 107:197801

    Article  Google Scholar 

  27. Meyer H, Müller-Plathe F (2001) Formation of chain-folded structures in supercooled polymer melts. J Chem Phys 115:7807–7810

    Article  CAS  Google Scholar 

  28. Sommer J-U, Luo C (2010) Molecular dynamics simulations of semicrystalline polymers: crystallization, melting, and reorganization. J Polym Sci B 48:2222–2232

    Article  CAS  Google Scholar 

  29. Li Y, Ma Y, Li J, Jiang X, Hu W (2012) Dynamic Monte Carlo simulations of double crystallization accelerated in microdomains of diblock copolymers. J Chem Phys 136:104906

    Article  Google Scholar 

  30. Forrest JA, Dalnoki-Veress K (2001) The glass transition in thin polymer films. Adv Colloid Interf Sci 94:167–196

    Article  CAS  Google Scholar 

  31. Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17:R461–R524

    Article  CAS  Google Scholar 

  32. Tress M, Erber M, Mapesa EU, Huth H, Müller J, Serghei A, Schick C, Eichhorn KJ, Voit B, Kremer F (2010) Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules 43:9937–9944

    Article  CAS  Google Scholar 

  33. Bäumchen O, McGraw JD, Forrest JA, Dalnoki-Veress K (2012) Reduced glass transition temperatures in thin polymer films: surface effect or artifact? Phys Rev Lett 109:055701

    Article  Google Scholar 

  34. Tress M, Mapesa EU, Kossak W, Kipnusu WK, Reiche M, Kremer F (2013) Glassy dynamics in condensed isolated polymer chains. Science 341:1371–1374

    Article  CAS  Google Scholar 

  35. Paeng K, Swallen SF, Ediger MD (2011) Direct measurement of molecular motion in freestanding polystyrene thin films. J Am Chem Soc 133:8444–8447

    Article  CAS  Google Scholar 

  36. Napolitano S, Capponi S, Vanroy B (2013) Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur Phys J E 36:61

    Article  Google Scholar 

  37. Litvinov VM, Zhdanov AA (1987) Molecular motions in filled polydimethylsiloxanes. Vysokomol Soed Ser A 29:1021–1027

    CAS  Google Scholar 

  38. Litvinov VM, Barthel H, Weis J (2002) Structure of a PDMS layer grafted onto a silica surface studied by means of DSC and solid-state NMR. Macromolecules 35:4356–4364

    Article  CAS  Google Scholar 

  39. Kirst KU, Kremer F, Litvinov VM (1993) Broad-band dielectric-spectroscopy on the molecular-dynamics of bulk and adsorbed poly(dimethylsiloxane). Macromolecules 26:975–980

    Article  CAS  Google Scholar 

  40. Mauri M, Thomann Y, Schneider H, Saalwächter K (2008) Spin-diffusion NMR at low field for the study of multiphase solids. Sol State NMR 34:125–141

    Article  CAS  Google Scholar 

  41. Crescenzi V, Manzini G, Calzolar G, Borri C (1972) Thermodynamics of fusion of polypropriolactone and poly-ε-caprolactone. Comparative analysis of melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463

    Article  CAS  Google Scholar 

  42. Schäler K, Achilles A, Bärenwald R, Hackel C, Saalwächter K (2013) Dynamics in crystallites of poly(ε-caprolactone) as investigated by solid-state NMR. Macromolecules 46:7818–7825

    Article  Google Scholar 

  43. Meyer HW, Schneider H, Saalwächter K (2012) Proton NMR spin-diffusion studies of PS-PB block copolymers at low field: two- vs three-phase model and recalibration of spin-diffusion coefficients. Polym J 44:748–756

    Article  CAS  Google Scholar 

  44. Kratky O, Stabinger H (1984) Colloid Polym Sci 262:345

    Article  CAS  Google Scholar 

  45. Strobl G (1970) Acta Crystallogr A 26:367

    Article  Google Scholar 

  46. Albrecht T, Strobl G (1995) Macromolecules 28:5827–5833

    Article  CAS  Google Scholar 

  47. Maus A, Hertlein C, Saalwächter K (2006) A robust proton NMR method to investigate hard/soft ratios, crystallinity, and component mobility in polymers. Macromol Chem Phys 207:1150–1158

    Article  CAS  Google Scholar 

  48. Abragam A (1961) The principles of nuclear magnetism. Oxford Univ. Press, Oxford

    Google Scholar 

  49. Ba Y, Ripmeester JA (1998) Multiple quantum filtering and spin exchange in solid state nuclear magnetic resonance. J Chem Phys 108:8589–8594

    Article  CAS  Google Scholar 

  50. Demco DE, Johansson A, Tegenfeldt J (1995) Proton spin diffusion for spatial heterogeneity and morphology investigations of polymers. Solid State Nucl Magn Reson 4:13–38

    Article  CAS  Google Scholar 

  51. Buda A, Demco DE, Bertmer M, Bluemich B, Reining B, Keul H, Hoecker H (2003) Domain sizes in heterogeneous polymers by spin diffusion using single-quantum and double-quantum dipolar filters. Sol State NMR 24:39–67

    Article  CAS  Google Scholar 

  52. Bloembergen N (1949) On the interaction of nuclear spins in a crystalline lattice. Physica 15:386–426

    Article  CAS  Google Scholar 

  53. Chen Q, Schmidt-Rohr K (2006) Measurement of the local 1H spin-diffusion coefficient in polymers. Sol State NMR 29:142–152

    Article  CAS  Google Scholar 

  54. Mellinger F, Wilhelm M, Spiess HW (1999) Calibration of 1H NMR spin diffusion coefficients for mobile polymers through transverse relaxation measurements. Macromolecules 32:4686–4691

    Article  CAS  Google Scholar 

  55. Jia ZL, Zhang LL, Chen Q, Hansen EW (2008) Proton spin diffusion in polyethylene as a function of magic-angle spinning rate. A phenomenological approach. J Phys Chem A 112:1228–1233

    Article  CAS  Google Scholar 

  56. Roos M (2012) Nano-scale roughness of phase boundaries in heterogeneous polymers as studied by spin-diffusion NMR. Master thesis. Martin-Luther-University, Halle-Wittenberg

    Google Scholar 

  57. Scheidler P, Kob W, Binder K (2002) Cooperative motion and growing length scales in supercooled confined liquids. Europhys Lett 59:701–707

    Article  CAS  Google Scholar 

  58. Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998) Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys Rev Lett 81:2727–2730

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Horst Schneider and Günter Hempel for the fruitful discussions and comments, and their help in the initial states of this study, and Ilja Gunkel for additional SAXS data. Funding of this work was provided by the Deutsche Forschungsgemeinschaft (SA982/6-1 and SFB-TRR 102 project A1). We also acknowledge the infrastructural support from the European Union (ERDF program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Saalwächter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roos, M., Schäler, K., Seidlitz, A. et al. NMR study of interphase structure in layered polymer morphologies with mobility contrast: disorder and confinement effects vs. dynamic heterogeneities. Colloid Polym Sci 292, 1825–1839 (2014). https://doi.org/10.1007/s00396-014-3218-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3218-8

Keywords

Navigation