Skip to main content
Log in

Colloids of pure proteins by hard templating

  • Invited Review
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Colloidal particles from pure proteins are favorable over composite colloids (usually polymer-based) for applications in drug delivery and biocatalysis. This is due to degradation issue and protein unfolding. Hard templating based on porous CaCO3 cores has been recently adopted for fabrication of pure protein colloids. In comparison to conventional techniques, the templating offers (i) a control over particles size and (ii) mild preparation conditions without any additives, shear forces, and exposure to high temperature or gas-water interface. In this review, the current achievements in CaCO3-based templating of protein colloids are given. The focus is on physicochemical and material properties of the colloids such as stability, mechanical properties, and internal structure. These properties are considered as a function of pH, ionic strength, and protein denaturation degree. Understanding of these basic aspects gives an option to formulate the protein colloids by hard templating achieving desired particle properties that is crucially important for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotechnol 24(7):769–U5

    Article  CAS  Google Scholar 

  2. Brock A (2008). Protein drugs: global markets and manufacturing technologies. BCC research; Report no.: BIO021C

  3. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7(1):21–39

    Article  CAS  Google Scholar 

  4. Walsh G (2003). Biopharmaceuticals: biochemistry and biotechnology. 2nd ed: Wiley-Blackwell

  5. Ripple DC, Dimitrova MN (2012) Protein particles: what we know and what we do not know. J Pharm Sci 101(10):3568–3579

    Article  CAS  Google Scholar 

  6. Krebs MRH, Devlin GL, Donald AM (2007) Protein particulates: another generic form of protein aggregation? Biophys J 92(4):1336–1342

    Article  CAS  Google Scholar 

  7. Yang SX, Yuan WE, Jin T (2009) Formulating protein therapeutics into particulate forms. Expert Opin Drug Deliv 6(10):1123–1133

    Article  CAS  Google Scholar 

  8. Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203(1–2):1–60

    Article  CAS  Google Scholar 

  9. Maa YF, Nguyen PA, Sweeney T, Shire SJ, Hsu CC (1999) Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res 16(2):249–254

    Article  CAS  Google Scholar 

  10. Basu SK, Govardhan CP, Jung CW, Margolin AL (2004) Protein crystals for the delivery of biopharmaceuticals. Expert Opin Biol Ther 4(3):301–317

    Article  CAS  Google Scholar 

  11. Pechenov S, Shenoy B, Yang MX, Basu SK, Margolin AL (2004) Injectable controlled release formulations incorporating protein crystals. J Control Release 96(1):149–158

    Article  CAS  Google Scholar 

  12. Bailey MM, Gorman EM, Munson EJ, Berkland C (2008) Pure insulin nanoparticle agglomerates for pulmonary delivery. Langmuir 24(23):13614–13620

    Article  CAS  Google Scholar 

  13. Klingler C, Müller BW, Steckel H (2009) Insulin-micro- and nanoparticles for pulmonary delivery. Int J Pharm 377(1–2):173–179

    Article  CAS  Google Scholar 

  14. Khafagy E-S, Morishita M, Onuki Y, Takayama K (2007) Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 59(15):1521–1546

    Article  CAS  Google Scholar 

  15. Bee JS, Chiu D, Sawicki S, Stevenson JL, Chatterjee K, Freund E, Carpenter JF, Randolph TW (2009) Monoclonal antibody interactions with micro- and nanoparticles: adsorption, aggregation, and accelerated stress studies. J Pharm Sci 98(9):3218–3238

    Article  CAS  Google Scholar 

  16. Bee JS, Stevenson JL, Mehta B, Svitel J, Pollastrini J, Platz R, Freund E, Carpenter JF, Randolph TW (2009) Response of a concentrated monoclonal antibody formulation to high shear. Biotechnol Bioeng 103(5):936–943

    Article  CAS  Google Scholar 

  17. Irngartinger M, Camuglia V, Damm M, Goede J, Frijlink HW (2004) Pulmonary delivery of therapeutic peptides via dry powder inhalation: effects of micronisation and manufacturing. Eur J Pharm Biopharm 58(1):7–14

    Article  CAS  Google Scholar 

  18. Petrov AI, Volodkin DV, Sukhorukov GB (2005) Protein-calcium carbonate co-precipitation. A tool for protein encapsulation. Biotech Prog 21(3):918–925

    Article  CAS  Google Scholar 

  19. Stein EW, Volodkin DV, McShane MJ, Sukhorukov GB (2006) Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing co-immobilized glucose oxidase and peroxidase. Biomacromolecules 7:710–719

    Article  CAS  Google Scholar 

  20. Sukhorukov GB, Volodkin DV, Günther AM, Petrov AI, Shenoy DB, Möhwald H (2014) Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J Mater Chem 14:2073–2081

    Article  Google Scholar 

  21. Volodkin DV, Petrov AI, Prevot M, Sukhorukov GB (2004) Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir 20(8):3398–3406

    Article  CAS  Google Scholar 

  22. Volodkin DV, Larionova NI, Sukhorukov GB (2014) Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules 5:1962–1972

    Article  Google Scholar 

  23. Pechenkin MA, Mohwald H, Volodkin DV (2012) pH- and salt-mediated response of layer-by-layer assembled PSS/PAH microcapsules: fusion and polymer exchange. Soft Matter 8(33):8659–8665

    Article  CAS  Google Scholar 

  24. Tong W, She S, Xie L, Gao C (2011) High efficient loading and controlled release of low-molecular-weight drugs by combination of spontaneous deposition and heat-induced shrinkage of multilayer capsules. Soft Matter 7(18):8258–8265

    Article  CAS  Google Scholar 

  25. Kreft O, Javier AM, Sukhorukov GB, Parak WJ (2007) Polymer microcapsules as mobile local pH-sensors. J Mater Chem 17(42):4471–4476

    Article  CAS  Google Scholar 

  26. Schmidt S, Volodkin D (2013) Microparticulate biomolecules by mild CaCO3 templating. J Mater Chem B 1(9):1210–1218

    Article  CAS  Google Scholar 

  27. Volodkin D (2014). CaCO3 templated micro-beads and -capsules for bioapplications. Advances in Colloid and Interface Science, in press

  28. Wang YJ, Caruso F (2006) Nanoporous protein particles through templating mesoporous silica spheres. Adv Mater 18(6):795–800

    Article  CAS  Google Scholar 

  29. Gao CY, Moya S, Lichtenfeld H, Casoli A, Fiedler H, Donath E, Mohwald H (2001) The decomposition process of melamine formaldehyde cores: the key step in the fabrication of ultrathin polyelectrolyte multilayer capsules. Macromol Mater Eng 286(1):355–361

    Article  CAS  Google Scholar 

  30. Balabushevitch NG, Tiourina OP, Volodkin DV, Larionova NI, Sukhorukov GB (2003) Loading the multilayer dextran sulfate/protamine microsized capsules with peroxidase. Biomacromolecules 4(5):1191–1197

    Article  Google Scholar 

  31. Shenoy DB, Antipov AA, Sukhorukov GB, Mohwald H (2003) Layer-by-layer engineering of biocompatible, decomposable core–shell. Biomacromolecules 4(2):265–272

    Article  CAS  Google Scholar 

  32. Volodkin DV, Schmidt S, Fernandes P, Larionova NI, Sukhorukov GB, Duschl C, Möhwald H, von Klitzing R (2012) One-step formulation of protein microparticles with tailored properties: hard templating at soft conditions. Adv Funct Mater 22(9):1914–1922

    Article  CAS  Google Scholar 

  33. Parakhonskiy BV, Haase A, Antolini R (2012) Sub-micrometer vaterite containers: synthesis, substance loading, and release. Angew Chem Int Ed 51(5):1195–1197

    Article  CAS  Google Scholar 

  34. De Temmerman M-L, Demeester J, De Vos F, De Smedt SC (2011) Encapsulation performance of layer-by-layer microcapsules for proteins. Biomacromolecules 12(4):1283–1289

    Article  Google Scholar 

  35. Schmidt S, Behra M, Uhlig K, Madaboosi N, Hartmann L, Duschl C, Volodkin D (2013) Mesoporous protein particles through colloidal CaCO3 templates. Adv Funct Mater 23(1):116–123

    Article  CAS  Google Scholar 

  36. Xiong Y, Steffen A, Andreas K, Muller S, Sternberg N, Georgieva R, Baumler H (2012) Hemoglobin-based oxygen carrier microparticles: synthesis, properties, and in vitro and in vivo investigations. Biomacromolecules 13(10):3292–3300

    Article  CAS  Google Scholar 

  37. Mak WC, Georgieva R, Renneberg R, Baumler H (2010) Protein particles formed by protein activation and spontaneous self-assembly. Adv Funct Mater 20(23):4139–4144

    Article  CAS  Google Scholar 

  38. Hernandez-Hernandez A, Rodriguez-Navarro AB, Gomez-Morales J, Jimenez-Lopez C, Nys Y, Garcia-Ruiz JM (2008) Influence of model globular proteins with different isoelectric points on the precipitation of calcium carbonate. Cryst Growth Des 8(5):1495–1502

    Article  CAS  Google Scholar 

  39. De Geest BG, Vandenbroucke RE, Guenther AM, Sukhorukov GB, Hennink WE, Sanders NN, Demeester J, De Smedt SC (2006) Intracellularly degradable polyelectrolyte microcapsules. Adv Mater 18(8):1005–1009

    Article  Google Scholar 

  40. DeKoker S, De Geest BG, Singh SK, De Rycke R, Naessens T, Van Kooyk Y, Demeester J, De Smedt SC, Grooten J (2009) Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated antigens. Angew Chem Int Ed 48(45):8485–8489

    Article  CAS  Google Scholar 

  41. De Koker S, Naessens T, De Geest BG, Bogaert P, Demeester J, De Smedt S, Grooten J (2010) Biodegradable polyelectrolyte microcapsules: antigen delivery tools with Th17 skewing activity after pulmonary delivery. J Immunol (Baltimore, Md : 1950) 184(1):203–211

    Article  Google Scholar 

  42. Borodina T, Markvicheva E, Kunizhev S, Möhwald H, Sukhorukov GB, Kreft O (2007) Controlled release of DNA from self-degrading microcapsules. Macromol Rapid Commun 28(18–19):1894–1899

    Article  CAS  Google Scholar 

  43. Volodkin DV, von Klitzing R, Möhwald H (2010) Pure protein microspheres by calcium carbonate templating. Angew Chem Int Ed 49(48):9258–9261

    Article  CAS  Google Scholar 

  44. Schmidt S, Uhlig K, Duschl C, Volodkin D (2014). Stability and cell uptake of calcium carbonate templated insulin microparticles. Acta Biomaterialia, (in press)

  45. Wang A, Cui Y, Li J, van Hest JCM (2012) Fabrication of gelatin microgels by a “cast” strategy for controlled drug release. Adv Funct Mater 22(13):2673–2681

    Article  CAS  Google Scholar 

  46. Behra M, Azzouz N, Schmidt S, Volodkin DV, Mosca S, Chanana M, Seeberger PH, Hartmann L (2013) Magnetic porous sugar-functionalized PEG microgels for efficient isolation and removal of bacteria from solution. Biomacromolecules 14(6):1927–1935

    Article  CAS  Google Scholar 

  47. Behra M, Schmidt S, Hartmann J, Volodkin DV, Hartmann L (2012) Synthesis of porous PEG microgels using CaCO3 microspheres as hard templates. Macromol Rapid Commun 33(12):1049–1054

    Article  CAS  Google Scholar 

  48. Yan XH, Li JB, Mohwald H (2012) Templating assembly of multifunctional hybrid colloidal spheres. Adv Mater 24(20):2663–2667

    Article  CAS  Google Scholar 

  49. Fujii A, Maruyama T, Ohmukai Y, Kamio E, Sotani T, Matsuyama H (2010) Cross-linked DNA capsules templated on porous calcium carbonate microparticles. Colloid Surf A-Physicochem Eng Asp 356(1–3):126–133

    Article  CAS  Google Scholar 

  50. Brange J, Langkjaer L (1992) Chemical-stability of insulin .3. Influence of excipients, formulation, and ph. Acta Pharm Nordica 4(3):149–158

    CAS  Google Scholar 

  51. Mollmann SH, Jorgensen L, Bukrinsky JT, Elofsson U, Norde W, Frokjaer S (2006) Interfacial adsorption of insulin—conformational changes and reversibility of adsorption. Eur J Pharm Sci 27(2–3):194–204

    Article  CAS  Google Scholar 

  52. Li T, Jing X, Huang Y (2011) Polymer/hemoglobin assemblies: biodegradable oxygen carriers for artificial red blood cells. Macromol Biosci 11(7):865–875

    Article  CAS  Google Scholar 

  53. Cao L, Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14(4):387–394

    Article  CAS  Google Scholar 

  54. Roessl U, Nahalka J, Nidetzky B (2010) Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett 32(3):341–350

    Article  CAS  Google Scholar 

  55. Yu HW, Chen H, Wang X, Yang YY, Ching CB (2006) Cross-linked enzyme aggregates (CLEAs) with controlled particles: application to Candida rugosa lipase. J Mol Catal B Enzym 43(1–4):124–127

    Article  CAS  Google Scholar 

  56. Volodkin DV, Balabushevitch NG, Sukhorukov GB, Larionova NI (2003) Model system for controlled protein release: pH-sensitive polyelectrolyte microparticles. STP Pharm Sci 13(3):163–170

    CAS  Google Scholar 

  57. Volodkin DV, Balabushevitch NG, Sukhorukov GB, Larionova NI (2003) Inclusion of proteins into polyelectrolyte microparticles by alternative adsorption of polyelectrolytes on protein aggregates. Biochem Mosc 68(2):236–241

    Article  CAS  Google Scholar 

  58. Merkel TJ, Jones SW, Herlihy KP, Kersey FR, Shields AR, Napier M, Luft JC, Wu HL, Zamboni WC, Wang AZ, Bear JE, DeSimone JM (2011) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci U S A 108(2):586–591

    Article  CAS  Google Scholar 

  59. Fernandes PAL, Schmidt S, Zeiser M, Fery A, Hellweg T (2010) Swelling and mechanical properties of polymer gels with cross-linking gradient. Soft Matter 6(15):3455–3458

    Article  CAS  Google Scholar 

  60. Delcea M, Schmidt S, Palankar R, Fernandes PAL, Fery A, Möhwald H, Skirtach AG (2010) Mechanobiology: correlation between mechanical stability of microcapsules studied by AFM and impact of cell-induced stresses. Small 6(24):2858–2862

    Article  CAS  Google Scholar 

  61. Palankar R, Pinchasik B-E, Schmidt S, De Geest BG, Fery A, Mohwald H, Skirtach AG, Delcea M (2013) Mechanical strength and intracellular uptake of CaCO3-templated LbL capsules composed of biodegradable polyelectrolytes: the influence of the number of layers. J Mater Chem B 1(8):1175–1181

    Article  CAS  Google Scholar 

  62. Fery A, Weinkamer R (2007) Mechanical properties of micro- and nanocapsules: single-capsule measurements. Polymer 48(25):7221–7235

    Article  CAS  Google Scholar 

  63. Pocker Y, Biswas SB (1980) Conformational dynamics of insulin in solution—circular dichroic studies. Biochemistry 19(22):5043–5049

    Article  CAS  Google Scholar 

  64. Best JP, Yan Y, Caruso F (2012) Particle geometry and mechanics in biomedical applications: the role of particle geometry and mechanics in the biological domain. Adv Healthc Mater 1(1):1

    Article  Google Scholar 

  65. Merkel TJ, Jones SW, Herlihy KP, Kersey FR, Shields AR, Napier M, Luft JC, Wu H, Zamboni WC, Wang AZ, Bear JE, DeSimone JM (2011) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci 108(2):586–591

    Article  CAS  Google Scholar 

  66. Sergeeva A, Gorin D, Volodkin D (2013). Polyelectrolyte microcapsule arrays: preparation and biomedical applications. BioNanoSci, 1–14

  67. Volodkin D, Skirtach A, Mohwald H (2011). LbL Films as reservoirs for bioactive molecules. In Bioactive Surfaces, Borner, H. G.; Lutz, J. F., Eds. Springer-Verlag Berlin: Berlin 240: 135–161

  68. Madaboosi N, Uhlig K, Jäger MS, Möhwald H, Duschl C, Volodkin DV (2012) Microfluidics as a tool to understand the build-Up mechanism of exponential-like growing films. Macromol Rapid Commun 33(20):1775–1779

    Article  CAS  Google Scholar 

  69. Madaboosi N, Uhlig K, Schmidt S, Jager MS, Mohwald H, Duschl C, Volodkin DV (2012) Microfluidics meets soft layer-by-layer films: selective cell growth in 3D polymer architectures. Lab Chip 12(8):1434–1436

    Article  CAS  Google Scholar 

  70. Uhlig K, Madaboosi N, Schmidt S, Jager MS, Rose J, Duschl C, Volodkin DV (2012) 3d localization and diffusion of proteins in polyelectrolyte multilayers. Soft Matter 8(47):11786–11789

    Article  CAS  Google Scholar 

  71. Schmidt S, Madaboosi N, Uhlig K, Köhler D, Skirtach A, Duschl C, Möhwald H, Volodkin DV (2012) Control of cell adhesion by mechanical reinforcement of soft polyelectrolyte films with nanoparticles. Langmuir 28(18):7249–7257

    Article  CAS  Google Scholar 

  72. Volodkin D, Skirtach A, Madaboosi N, Blacklock J, von Klitzing R, Lankenau A, Duschl C, Mohwald H (2010) IR-light triggered drug delivery from micron-sized polymer biocoatings. J Control Release 148(1):e70–e71

    Article  CAS  Google Scholar 

  73. Volodkin D, Skirtach A, Möhwald H (2012) Bioapplications of light-sensitive polymer films and capsules assembled using the layer-by-layer technique. Polym Int 61(5):673–679

    Article  CAS  Google Scholar 

  74. Volodkin DV, Delcea M, Mohwald H, Skirtach AG (2009) Remote near-IR light activation of a hyaluronic acid/poly(L-lysine) multilayered film and film-entrapped microcapsules. ACS Appl Mater Interfaces 1(8):1705–1710

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DV Volodkin thanks Alexander von Humboldt Foundation for support (Sofja Kovalevskaja Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Volodkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodkin, D. Colloids of pure proteins by hard templating. Colloid Polym Sci 292, 1249–1259 (2014). https://doi.org/10.1007/s00396-014-3213-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3213-0

Keywords

Navigation