Skip to main content
Log in

Correlation between wetting properties and electrical performance of solution processed PEDOT:PSS/CNT nano-composite thin films

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nano-composite thin films of poly(3,4-ethylenedioxythiophene) poly(styrene-sulfonate) (PEDOT:PSS) with different loading concentrations of multi-walled carbon nanotubes (MWCNT) were deposited on glass substrates using inkjet printing and spin coating techniques. The surface energy of the substrate was modified using an oxygen plasma to achieve different degrees of wetting by the composite solution. We show that the electrical properties strongly depend on the wetting of the substrate and by controlling the wettability, the conductivity of the nano-composite samples can be improved. Based on polymer conductivity, the electrical conductivity of the composite film can be improved or degraded by orders of magnitude with the incorporation of the same concentration of MWCNT. Moreover, electrical measurements show strong correlation between the conductivity of the carbon nanotube network and the resulting nano-composite films. The dependence of electrical properties on the wettability and the conductivity of the composite components could explain the diversity in the electrical behaviour reported in the literature for PEDOT:PSS/MWCNT nano-composite thin films.

The impact on the morphological and electrical properties of PEDOT:PSS/CNT films as a result of surface wetting properties of the substrate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agalya G, Lv C, Wang X, Koyama M, Kubo M, Miyamoto A (2005) Theoretical study on the electronic and molecular properties of ground and excited states of ethylenedioxythiophene and styrenesulphonic acid. Appl Surf Sci 244(1–4):195–198. doi:10.1016/j.apsusc.2004.09.139

    Article  CAS  Google Scholar 

  2. Cruz-Cruz I, Reyes-Reyes M, Aguilar-Frutis MA, Rodriguez AG, López-Sandoval R (2010) Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films. Synthetic Met 160(13–14):1501–1506. doi:10.1016/j.synthmet.2010.05.010

    Article  CAS  Google Scholar 

  3. Kim WH, Kushto GP, Kim H, Kafafi ZH (2003) Effect of annealing on the electrical properties and morphology of a conducting polymer used as an anode in organic light-emitting devices. J Polym Sci B Polym Phys 41(21):2522–2528. doi:10.1002/polb.10646

    Article  CAS  Google Scholar 

  4. Dimitriev OP, Grinko DA, Noskov YV, Ogurtsov NA, Pud AA (2009) PEDOT:PSS films—effect of organic solvent additives and annealing on the film conductivity. Synth Met 159(21–22):2237–2239. doi:10.1016/j.synthmet.2009.08.022

    Article  CAS  Google Scholar 

  5. Yun DJ, Hong K, Kim S, Yun WM, Jang JY, Kwon WS, Park CE, Rhee SW (2011) Multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices. ACS Appl Mater Interfaces 3(1):43–49. doi:10.1021/am1008375

    Article  CAS  Google Scholar 

  6. Mustonen T, Kordás K, Saukko S, Tóth G, Penttilä JS, Helistö P, Seppä H, Jantunen H (2007) Inkjet printing of transparent and conductive patterns of single-walled carbon nanotubes and PEDOT-PSS composites. physica status solidi (b) 244(11):4336–4340. doi:10.1002/pssb.200776186

    Article  CAS  Google Scholar 

  7. Park J, Lee A, Yim Y, Han E (2011) Electrical and thermal properties of PEDOT:PSS films doped with carbon nanotubes. Synthetic Met 161(5–6):523–527. doi:10.1016/j.synthmet.2011.01.006

    Article  CAS  Google Scholar 

  8. Zhang J, Gao L, Sun J, Liu Y, Wang Y, Wang J (2012) Incorporation of single-walled carbon nanotubes with PEDOT/PSS in DMSO for the production of transparent conducting films. Diam Relat Mater 22:82–87. doi:10.1016/j.diamond.2011.12.008

    Article  CAS  Google Scholar 

  9. Huh JW, Jeong JW, Lee JW, Shin S-I, Kwon J-H, Choi J, Yoon HG, Cho G-I, You I-K, Kang S-Y, Ju BK (2009) Carbon nanotube and conducting polymer dual-layered films fabricated by microcontact printing. Appl Phys Lett 94(22):223311. doi:10.1063/1.3137185

    Article  Google Scholar 

  10. Denneulin A, Bras J, Blayo A, Khelifi B, Roussel-Dherbey F, Neuman C (2009) The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions. Nanotechnology 20(38):385701. doi:10.1088/0957-4484/20/38/385701

    Article  Google Scholar 

  11. Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4(4):703–713. doi:10.1039/b711984d

    Article  CAS  Google Scholar 

  12. Wilson P, Lekakou C, Watts JF (2012) A comparative assessment of surface microstructure and electrical conductivity dependence on co-solvent addition in spin coated and inkjet printed poly(3,4-ethylenedioxythiophene):polystyrene sulphonate (PEDOT:PSS). Org Electron 13(3):409–418. doi:10.1016/j.orgel.2011.11.011

    Article  CAS  Google Scholar 

  13. Montibon E, Lestelius M, Jarnstrom L (2010) Electroconductive paper prepared by coating with blends of Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) and organic solvents. J Appl Polym Sci 117(6):3524–3532. doi:10.1002/app.32250

    CAS  Google Scholar 

  14. Jönsson SKM, Birgerson J, Crispin X, Greczynski G, Osikowicz W, Denier van der Gon AW, Salaneck WR, Fahlman M (2003) The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synth Met 139(1):1–10. doi:10.1016/s0379-6779(02)01259-6

    Article  Google Scholar 

  15. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498. doi:10.1016/j.compscitech.2008.06.018

    Article  CAS  Google Scholar 

  16. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899. doi:10.1016/s0032-3861(03)00539-1

    Article  CAS  Google Scholar 

  17. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim J-K (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215. doi:10.1002/adfm.200700065

    Article  CAS  Google Scholar 

  18. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401. doi:10.1016/j.progpolymsci.2009.09.003

    Article  CAS  Google Scholar 

  19. Moon JS, Park JH, Lee TY, Kim YW, Yoo JB, Park CY, Kim JM, Jin KW (2005) Transparent conductive film based on carbon nanotubes and PEDOT composites. Diam Relat Mater 14(11–12):1882–1887. doi:10.1016/j.diamond.2005.07.015

    Article  CAS  Google Scholar 

  20. Hatton RA, Blanchard NP, Tan LW, Latini G, Cacialli F, Silva SRP (2009) Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells. Org Electron 10(3):388–395. doi:10.1016/j.orgel.2008.12.013

    Article  CAS  Google Scholar 

  21. Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interf Sci 81(3):167–249. doi:10.1016/s0001-8686(98)00087-6

    Article  CAS  Google Scholar 

  22. Sze SM (1985) Semiconductor devices physics and technology. John Wiley & sons, New York

    Google Scholar 

  23. Nardes AM, Kemerink M, Janssen RAJ, Bastiaansen JAM, Kiggen NMM, Langeveld BMW, van Breemen AJJM, de Kok MM (2007) Microscopic understanding of the anisotropic conductivity of PEDOT : PSS thin films. Adv Mater 19(9):1196. doi:10.1002/adma.200602575

    Article  CAS  Google Scholar 

  24. Li C, Thostenson ET, Chou T-W (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249. doi:10.1016/j.compscitech.2008.01.006

    Article  CAS  Google Scholar 

  25. Hecht D, Hu L, Gruner G (2006) Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl Phys Lett 89(13). doi:10.1063/1.2356999

  26. Simien D, Fagan JA, Luo W, Douglas JF, Migler K, Obrzut J (2008) Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks. Aces Nano 2(9):1879–1884. doi:10.1021/nn800376x

    Article  CAS  Google Scholar 

  27. Sangeeth CSS, Jaiswal M, Menon R (2009) Correlation of morphology and charge transport in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. J Phys Condens Matter 21 (7). doi:10.1088/0953-8984/21/7/072101

Download references

Acknowledgment

Mr. Alshammari would like to acknowledge the University of Hail and the Saudi Arabia cultural bureau for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ravi P. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alshammari, A.S., Shkunov, M. & Silva, S.R.P. Correlation between wetting properties and electrical performance of solution processed PEDOT:PSS/CNT nano-composite thin films. Colloid Polym Sci 292, 661–668 (2014). https://doi.org/10.1007/s00396-013-3088-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3088-5

Keywords

Navigation