Skip to main content
Log in

Synthesis and surface properties of self-crosslinking core–shell acrylic copolymer emulsions containing fluorine/silicone in the shell

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Stable emulsions of a core–shell acrylic copolymer (non-crosslinkable V0, and crosslinkable V2, V4, V6, and V8, where the numbers indicate the wt% of crosslinking agent based on the total acrylate monomer content) containing butyl acrylate (BA, 45 wt%), glycidyl methacrylate (GMA, 45 wt%), heptadecafluorodecyl methacrylate (PFA, 10 wt%), and various contents of crosslinking agent (vinyltriethoxysilane, VTES) were synthesized using a three-stage seeded emulsion polymerization process with a small amount of surfactant. The average particle size and viscosity of emulsions increased significantly with increasing VTES content. This study examined the effects of the VTES content on the surface/mechanical properties of self-crosslinked copolymer film samples containing a fixed acrylate monomer content to find the optimum VTES content. XPS showed that the film–air surface of the copolymer samples had a higher fluorine/silicone content than the film–dish interface. The tensile strength/modulus, thermal stability, and two Tgs (α and β Tgs) of the film samples increased significantly with increasing VTES content. The contact angle of the film samples increased with increasing VTES content up to approximately 6 wt%, and then decreased slightly. The optimum VTES content was approximately 6 wt% based on the total acrylate monomer content to obtain a high water/oil repellent coating material (V6) with the highest water/methylene iodide-contact angles (118.2°/81.8°) and lowest surface energy (18.4 mN/m).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lowell PA, El-Asser MS (1997) Emulsion polymerization and emulsion polymers. Wiley, New York

    Google Scholar 

  2. Suresh KI, Vishwanatham S, Bartsch E (2007) Viscoelastic and damping characteristics of poly(n-butyl acrylate)-poly(n-butyl methacrylate) semi-IPN latex films. Polym Adv Technol 18:364–372. doi:10.1002/pat.897

    Article  CAS  Google Scholar 

  3. Cheng XL, Chen ZX, Shi TS, Wang HY (2007) Synthesis and characterization of core–shell LIPN-fluorine-containing polyacrylate latex. Colloid Surf A 292:119–124. doi:10.1016/j.colsurfa.2006.06.006

    Article  CAS  Google Scholar 

  4. Cui XJ, Zhong SL, Wang HY (2008) Preparation and characterization of emulsifier-free core–shell interpenetrating polymer network-fluorinated polyacrylate latex particles. Colloid Surf A 324:14–21. doi:10.1016/j.colsurfa.2008.03.018

    Article  CAS  Google Scholar 

  5. Zhang JD, Yang MJ, Zhu YR, Yang H (2006) Synthesis and characterization of crosslinkable latex with interpenetrating network structure based on polystyrene and polyacrylate. Polym Ins 55:951–960. doi:10.1002/pi.2056

    Article  CAS  Google Scholar 

  6. Bhatia QS, Pan DH, Koberstein JT (1988) Preferential surface adsorption in miscible blends of polystyrene and poly(vinyl methyl ether). Macromolecules 21:2166–2175. doi:10.1021/ma00185a049

    Article  CAS  Google Scholar 

  7. Ober R, Paz L, Taupin C, Pincus P, Boileua S (1983) Study of the surface tension of polymer solutions: theory and experiments. 1. Good solvent conditions. Macromolecules 16:50–55. doi:10.1021/ma00235a010

    Article  CAS  Google Scholar 

  8. Shull KR, Kramer EJ (1990) Mean-field theory of polymer interfaces in the presence of block copolymers. Macromolecules 23:4769–4779

    Article  CAS  Google Scholar 

  9. Fox HW, Zisman WA (1950) The spreading of liquids on low-energy surfaces. J Colloid Sci 5:514–31

    Article  CAS  Google Scholar 

  10. Bernett MK, Zisman WA (1962) Wetting properties of acrylic acid and methacrylic polymers containing fluorinated side chains. J Phys Chem 66:1207–1208

    Article  CAS  Google Scholar 

  11. Hare EF, Shafrin EG, Zisman WA (1954) Properties of films of adsorbed fluorinated acids. J Phys Chem 58:236–239. doi:10.1021/j150513a011

    Article  CAS  Google Scholar 

  12. Bernett MK, Zisman WA (1960) Wetting properties of tetrafluoroethylene and hexafluoropropylene copolymers. J Phys Chem 64:1292–1294

    Article  CAS  Google Scholar 

  13. Li H, Zhang ZB, Hu CP, Wu SS, Ying SK (2004) Surface composition and property of film prepared with aqueous dispersion of polyurethaneurea-acrylate including fluorinated block copolymer. Euro Polym J 40:2195–2201. doi:10.1016/j.eurpolymj.2004.02.010

    Article  CAS  Google Scholar 

  14. Kassis CM, Steehler JM, Linton RW (1966) XPS studies of fluorinated acrylate polymers and block copolymers with polystyrene. Macromolecules 29:3247–3254. doi:10.1021/ma951782x

    Article  Google Scholar 

  15. Thomas RR, Anton DR, Graham WF, Darmon MJ, Sauer BB, Stika KM, Swartzfager DG (1997) Preparation and surface properties of acrylic polymers containing fluorinated monomers. Macromolecules 30:2883–2890. doi:10.1021/ma9618686

    Article  CAS  Google Scholar 

  16. Iyengar DR, Perutz SM, Dai CA, Ober CK, Kramer EJ (1996) Surface segregation studies of fluorine-containing block copolymers. Macromolecules 29:1229–1234. doi:10.1021/ma950544z

    Article  CAS  Google Scholar 

  17. Genzer J, Sivaniah E, Kramer EJ, Wang J, Korner H, Char K, Ober CK, Dekoven BM, Bubeck RA, Fischer DA, Sambasivan S (2000) Temperature dependence of molecular orientation on the surfaces of semifluorinated polymer thin films. Langmuir 16:1993–1997. doi:10.1021/la9910327

    Article  CAS  Google Scholar 

  18. Van de Grampel RD (2002), Surfaces of fluorinated polymer systems. Dissertation Ph. D., Eindhoven University of Technology

  19. McLain SJ, Sauer BB, Firment LE (1996) Surface properties and metathesis synthesis of block copolymers including perfluoroalkyl-ended polyethylenes. Macromolecules 29:8211–8219. doi:10.1021/ma960593r

    Article  CAS  Google Scholar 

  20. Mawson S, Johnston KP, Betts DE, McClain JB, Desimone JM (1997) Stabilized polymer microparticles by precipitation with a compressed fluid antisolvent. 1. Poly(fluoro acrylates). Macromolecules 30:71–77. doi:10.1021/ma961048t

    Article  CAS  Google Scholar 

  21. Park IJ, Lee SB, Choi CK (1998) Surface properties of the fluorine-contating graft copolymer of poly((perfluoroalkyl)ethyl methacrylate)-g-poly(methyl methacrylate). Macromolecules 31:7555–7558. doi:10.1021/ma970262u

    Article  CAS  Google Scholar 

  22. Cheng S, Chen Y, Chen ZJ (2002) Core–shell latex containing fluorinated polymer rich in shell. J Appl Polym Sci 85:1147–1153. doi:10.1002/app.10622

    Article  CAS  Google Scholar 

  23. Krupers M, Slangen PJ, Moller M (1998) Synthesis and properties of polymers based on oligo(hexafluoropropene oxide) containing methacrylates and copolymers with methyl methacrylate. Macromolecules 31:2552–2558. doi:10.1021/ma9701245

    Article  CAS  Google Scholar 

  24. Hopken J, Moller M (1992) Low surface energy polystyrene. Macromolecules 25:1461–1467. doi:10.1021/ma00031a016

    Article  CAS  Google Scholar 

  25. Pospiech DU, Jehnichen D, Haussler L, Voigt D, Grundke K, Ober C, Korner H, Wang J (1998) Semiflurorinated polyesters with low surface energy. Polym Prepr (ACS Div Polym Chem) 39:882–883

    CAS  Google Scholar 

  26. Bouteiller V, Garnault AM, Teyssie D, Boileau S, Moller M (1999) Synthesis, thermal and surface characterization of fluorinated polystyrenes. Polym Int 48:765–772. doi:10.1002/(SICI)1097-0126(199909)

    Article  CAS  Google Scholar 

  27. Schmidt DL, Coburn CE, DeKoven BM, Potter GE, Meyers GF, Fischer DA (1994) Water-based non-stick hydrophobic coatings. Nature 368:39–41. doi:10.1038/368039a0

    Article  CAS  Google Scholar 

  28. Elman JF, Johs BD, Long TE, Koverstein JT (1994) A neutron reflectivity investigation of surface and interface segregation of polymer functional end groups. Macromolecules 27:5341–5349. doi:10.1021/ma00097a013

    Article  CAS  Google Scholar 

  29. Boutevin B, Diaf KO, Pietrasanta Y, Taha M (1986) Synthesis of block cotelomers involving a perfluorinated chain and a hydrophilic chain Part 1. Use of fluorinated telogens with trichloromethyl end groups. J Polym Sci Part A: Polym Chem 24:3129–3137

    Article  CAS  Google Scholar 

  30. Bonardi C (1991), Eur Pat Appl EP 426530

  31. Chen Y, Cheng S, Wang Y, Zhang C (2006) Chemical components and properties of core–shell acrylate latex containing fluorine in the shell and their flims. J Appl Polym Sci 99:107–114. doi:10.1002/app.22460

    Article  CAS  Google Scholar 

  32. Cheng X, Chen Z, Shi T, Wang H (2007) Synthesis and characterization of core–shell LIPN-fluorine-containing polyacrylate latex. Colloids and Surfaces A 292:119–124. doi:10.1016/j.colsurfa.2006.06.006

    Article  CAS  Google Scholar 

  33. Lie Z, Zhao Y, Zhou J, Yuan X (2012) Synthesis and characterization of core–shell polyacrylate latex containing fluorine/silicone in the shell and self-stratification film. Colloid Polym Sci 290:203–211. doi:10.1007/s00396-011-2537-2

    Article  Google Scholar 

  34. Schmidt DL, Brady RF Jr, Lam K, Schmidt DC, Chaudhary MK (2004) Contact angle hysteresis, adhesion, and marine biofouling. Langmuir 20:2830–2836. doi:10.1021/la035385o

    Article  CAS  Google Scholar 

  35. Schmidt DL, DeKoven BM, Coburn CE, Potter GE, Meyers GF, Fischer DA (1996) Characterization of a new family of nonwettable, nonstick surfaces. Langmuir 12:518–529

    Article  CAS  Google Scholar 

  36. Maekawa T, Kamata S, Matsuo M (1991) The relationship between structures and dynamic surface properties of perfluoroalkyl containing polymers. J Fluorine Chemistry 54:84

    Article  Google Scholar 

  37. Zhang Y, Miao L, Yang C, Lu M (2012 on line) Synthesis of ambient temperature self-crosslinking VTES-based core–shell polyacrylate emulsion via modified micro-emulsion polymerization process. Polym Bull doi:10.1007/s00289-012-0867-y

  38. Tingting Y, Hui P, Shiyuan C, Park IJ (2005) Surface immobilization of perfluorinated acrylate copolymers by self-crosslinking. J Fluorine Chemistry 126:1570–1577. doi:10.1016/j.jfluchem.2005.09.008

    Article  Google Scholar 

  39. Marcu I, Daniels ES, Dimonie VL, Hagiopol C, Roberts JE, El-Aasser MS (2003) Incorporation of alkoxysilane into mode latex systems: vinyl copolymerization of vinyltriethoxysilane and n-butyl acrylate. Macromolecules 36:328–332. doi:10.1021/ma021288a

    Article  CAS  Google Scholar 

  40. Kaelble DH, Moacanin J (1977) A surface energy analysis of bioadhesion. Polymer 18:475–482

    Article  CAS  Google Scholar 

  41. Linfu SC, Xiao H, Li YP (2005) Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites. Polym Degrad Stab 87:103–110. doi:101016/j.polymegradstab.2004.07.011

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through NRF funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2003643).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cha Cheol Park or Han Do Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D.H., Lee, Y.H., Park, C.C. et al. Synthesis and surface properties of self-crosslinking core–shell acrylic copolymer emulsions containing fluorine/silicone in the shell. Colloid Polym Sci 292, 173–183 (2014). https://doi.org/10.1007/s00396-013-3064-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3064-0

Keywords

Navigation