Skip to main content
Log in

Inclusional association as studied by the drying dissipative structure. Part 1. Drying patterns of α-, β- and γ-cyclodextrin

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Macroscopic and microscopic drying patterns were observed on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous solutions of α-cyclodextrin (αCD), β-cyclodextrin (βCD), and γ-cyclodextrin (γCD), i.e., cone shape oligomers of polysaccharide. For all CD molecules, two kinds of macroscopic patterns, outside and inner broad rings and spoke lines formed. Multi-broad rings were formed for βCD in the inner region of the main broad ring at the outside edge especially at the high concentrations. Cooperative drying processes of the convection, sedimentation, and solidification were clarified. Microscopic drying patterns showing the formation of rod-like and/or sward-like crystals were observed mainly in the direction along the spoke lines. The microscopic patterns of βCD were similar to those of some of polysaccharides and polynucleotides the authors studied previously. α- and γ-cyclodextrins were slightly hygroscopic, and clear-cut drying patterns were not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Okubo T (2006) Molecular and colloidal electro-optics, Stoylov SP, Stoimenova MV (eds), p573. Taylor & Francis, New York

    Google Scholar 

  2. Okubo T (2008) Nanoparticles: syntheses, stabilization, passivation and functionalization, Nagarajan R, Hatton TA (eds), p256, ACS Book Washington DC

  3. Okubo T (2010) Macromolecular Symposia 288:67

    Article  CAS  Google Scholar 

  4. Gribbin G (1999) Almost everyone's guide to science. The universe, life and everything, Yale University Press, New Haven

  5. Ball P (1999) The self-made tapestry. Oxford Univ Press, Oxford, Pattern formation in nature

    Google Scholar 

  6. Terada T, Yamamoto R, Watanabe T (1934) Sci Paper Inst Phys Chem Res Jpn 27:173; Proc Imper Acad Tokyo 10:10

    Google Scholar 

  7. Terada T, Yamamoto R, Watanabe T (1934) Sci Pap Inst Phys Chem Res Jpn 27:75

    Google Scholar 

  8. Nakaya U (1947) Memoirs of Torahiko Terada (Japanese). Kobunsya, Tokyo

    Google Scholar 

  9. Okubo T, Kimura H, Kimura T, Hayakawa F, Shibata T, Kimura K (2005) Colloid & Polymer Science 283:1

    Article  Google Scholar 

  10. Okubo T (2006) Colloid & Polymer Science 285:225

    Article  CAS  Google Scholar 

  11. Okubo T (2009) Colloid & Polymer Science 287:167

    Article  CAS  Google Scholar 

  12. Okubo T, Okamoto J, Tsuchida A (2009) Colloid & Polymer Science 287:351

    Article  CAS  Google Scholar 

  13. Okubo T (2009) Colloid & Polymer Science 287:645

    Article  CAS  Google Scholar 

  14. Palmer HJ (1976) Journal of Fluid Mechanics 75:487

    Article  Google Scholar 

  15. Anderson DM, Davis SH (1995) Phys Fluids 7:248

    Article  CAS  Google Scholar 

  16. Pouth AF, Russel WB (1998) AIChEJ 44:2088

    Article  Google Scholar 

  17. Burelbach JP, Bankoff SG (1998) Journal of Fluid Mechanics 195:463

    Article  Google Scholar 

  18. Fischer BJ (2002) Langmuir 18:60

    Article  CAS  Google Scholar 

  19. Okubo T (2006) Colloid & Polymer Science 284:1191

    Article  CAS  Google Scholar 

  20. Okubo T (2006) Colloid & Polymer Science 284:1395

    Article  CAS  Google Scholar 

  21. Okubo T, Okamoto J, Tsuchida A (2007) Colloid & Polymer Science 285:967

    Article  CAS  Google Scholar 

  22. Okubo T (2007) Colloid & Polymer Science 285:1495

    Article  CAS  Google Scholar 

  23. Okubo T, Okamoto J, Tsuchida A (2008) Colloid & Polymer Science 286:385

    Article  CAS  Google Scholar 

  24. Okubo T, Okamoto J, Tsuchida A (2008) Colloid & Polymer Science 286:941

    Article  CAS  Google Scholar 

  25. Yamaguchi T, Kimura K, Tsuchida A, Okubo T, Matsumoto M (2005) Colloid & Polymer Science 283:1123

    Article  CAS  Google Scholar 

  26. Okubo T (2006) Colloid & Polymer Science 285:331

    Article  CAS  Google Scholar 

  27. Vanderhoff JW (1973) J Polym Sci Symp 41:155

    Article  Google Scholar 

  28. Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    Google Scholar 

  29. Ohara PC, Heath JR, Gelbart WM (1997) Angewandte Chemie 109:1120

    Article  Google Scholar 

  30. Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (1999) Langmuir 15:957

    Article  CAS  Google Scholar 

  31. Nikoobakht B, Wang ZL, El-Sayed MA (2000) The Journal of Physical Chemistry 104:8635

    CAS  Google Scholar 

  32. Ung T, Litz-Marzan LM, Mulvaney P (2001) The Journal of Physical Chemistry B 105:3441

    Article  CAS  Google Scholar 

  33. Okubo T, Okamoto J, Tsuchida A (2010) Colloid & Polymer Science 288:189

    Article  CAS  Google Scholar 

  34. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389:827

    Article  CAS  Google Scholar 

  35. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Phys Rev E 62:756

    Article  CAS  Google Scholar 

  36. Okubo T, Kanayama S, Ogawa H, Hibino M, Kimura K (2004) Colloid & Polymer Science 282:230

    Article  CAS  Google Scholar 

  37. Okubo T, Okamoto J, Takahashi S, Tsuchida A (2009) Colloid & Polymer Science 287:933

    Article  CAS  Google Scholar 

  38. Okubo T, Hagiwara A, Kitano H, Okamoto J, Takahashi S, Tsuchida A (2009) Colloid & Polymer Science 287:1155

    Article  CAS  Google Scholar 

  39. Okubo T, Okamoto J, Tsuchida A (2010) Colloid & Polymer Science 288:981

    Article  CAS  Google Scholar 

  40. Okubo T, Mizutani M, Takahashi S, Tsuchida A (2010) Colloid & Polymer Science 288:1551

    Article  CAS  Google Scholar 

  41. Okubo T, Mizutani M, Takahashi S, Tsuchida A (2010) Colloid & Polymer Science 288:1435

    Article  CAS  Google Scholar 

  42. Okubo T (2011) Colloid & Polymer Science 289:159

    Article  CAS  Google Scholar 

  43. Okubo T (2011) Colloid & Polymer Science 289:1205

    Article  CAS  Google Scholar 

  44. Okubo T, Takahashi S, Tsuchida A (2011) Colloids Surf B 87:11

    Article  CAS  Google Scholar 

  45. Okubo T, Suzuki D, Yamagata T, Katsuno A, Mizutani M, Kimura H, Tsuchida A (2011) Colloid & Polymer Science 289:807

    Article  CAS  Google Scholar 

  46. Okubo T, Suzuki D, Tsuchida A (2012) Colloid & Polymer Science 290:411

    Article  CAS  Google Scholar 

  47. Okubo T, Suzuki D, Tsuchida A (2012) Colloid & Polymer Science 290:867

    CAS  Google Scholar 

  48. Okubo T, Suzuki D, Tsuchida A (2012) Colloid & Polymer Science 290:1901

    Article  CAS  Google Scholar 

  49. Okubo T, Fujii S, Aono K, Nakamura Y (2013) Colloid & Polymer Science 291:1019

    Article  CAS  Google Scholar 

  50. Okubo T (2013) Colloid Polym Sci, in press. doi:10.1007/s00396-013-2896-y

  51. Okubo T (2013) Colloid Polymer Sci, in press. doi:10.1007/s00396-013-2930-0

  52. Connors KA (1997) Chemical Reviews 97:1325

    Article  CAS  Google Scholar 

  53. Bender ML, Komiyama K (1978) Cyclodextrin chemistry. Springer, New York

    Book  Google Scholar 

  54. Saenger W (1980) Angewandte Chemie (International Ed in English) 19:344

    Article  Google Scholar 

  55. Breslow R (1980) Accounts of Chemical Research 13:170

    Article  CAS  Google Scholar 

  56. Szejtli J (1998) Chemical Reviews 98:1743

    Article  CAS  Google Scholar 

  57. Harada A (2001) Accounts of Chemical Research 34:456

    Article  CAS  Google Scholar 

  58. Dodziuk H (2006) Cyclodextrins and their complexes: chemistry, analytical methods, applications, Wiley, Weinheim

  59. Okubo T, Kitano H, Ise N (1976) The Journal of Physical Chemistry 80:2661

    Article  CAS  Google Scholar 

  60. Okubo T (2008) Colloid & Polymer Science 286:1527

    Article  CAS  Google Scholar 

  61. Okubo T, Takahashi S, Tsuchida A (2011) Colloid & Polymer Science 289:1729

    Article  CAS  Google Scholar 

  62. Okubo T (2011) Colloid Surf B Biointerf 87:439

    Article  CAS  Google Scholar 

  63. Sabadini E, Cosgrove T, Egidio FC (2006) Carbohydrate Research 341:270

    Article  CAS  Google Scholar 

  64. Okubo T, Tsuchida A (2001) Studies Surface Catalysis 132:285

    Article  CAS  Google Scholar 

  65. Okubo T, Tsuchida A (2002) Ann NY Acad Sci 974:164

    Article  CAS  Google Scholar 

  66. Tsuchida A, Okubo T (2003) Fiber (Soc Fiber Sci Tech Jpn) 59:264

    Google Scholar 

Download references

Acknowledgments

Research funds from AMX Co. (Tokyo) are thanked deeply. Financial supports from the Ministry of Education, Culture, Sports, Science and Technology, Japan and Japan Society for the Promotion of Science for Grants-in-Aid for Exploratory Research and Scientific Research (B), respectively, are also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T. Inclusional association as studied by the drying dissipative structure. Part 1. Drying patterns of α-, β- and γ-cyclodextrin. Colloid Polym Sci 291, 2447–2454 (2013). https://doi.org/10.1007/s00396-013-2972-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2972-3

Keywords

Navigation