Skip to main content
Log in

Distorted colloidal crystal of similar-sized aggregates (1.5 μm in diameter) of nano-sized diamond particles (4 nm in diameter)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Distorted colloidal crystal suspension of similar-sized aggregates of diamonds (1.5 μm in diameter) was obtained by the deionization of aqueous suspension of the pre-particles of diamond, 4 nm in diameter. The stability, characteristics, and the rigidity of the crystal-like suspensions were studied. The main cause for the formation of the similar-sized aggregates is deduced to be the cooperation between the van de Waals inter-particle attraction and the repulsion induced by the vigorous thermal motion of the pre-particles. The rigidity was evaluated from the microscopic observation in the sedimentation equilibrium. Fluctuation parameters of the distorted colloidal crystals estimated from the rigidities were between 0.03 and 0.06, which are quite similar to those of typical colloidal crystals and solids of hard spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vanderhoff W, van de Hul HJ, Tausk RJM, Overbeek JTHG (1970) In: Goldfonger G (ed) Clean surfaces: their preparation and characterization for interfacial studies. Dekker, New York, pp 15–44

    Google Scholar 

  2. Hiltner PA, Papir YS, Krieger IM (1971) J Phys Chem 75:1881

    Article  CAS  Google Scholar 

  3. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) J Colloid Interf Sci 44:330

    Article  CAS  Google Scholar 

  4. Williams R, Crandall RS, Wojtowicz PJ (1976) Phys Rev Lett 37:348

    Article  Google Scholar 

  5. Mitaku S, Ohtsuki T, Enari K, Kishimoto A, Okano K (1978) Jpn J Appl Phys 17:305

    Article  CAS  Google Scholar 

  6. Lindsay HM, Chaikin PM (1982) J Chem Phys 76:3774

    Article  CAS  Google Scholar 

  7. Pieranski P (1983) Contemp Phys 24:25

    Article  CAS  Google Scholar 

  8. Ottewill RH (1985) Ber Bunsenges Phys Chem 89:517

    Article  CAS  Google Scholar 

  9. Aastuen DJW, Clark NA, Cotter LK, Ackerson BJ (1986) Phys Rev Lett 57:1733

    Article  CAS  Google Scholar 

  10. Pusey PN, van Megen W (1986) Nature 320:340

    Article  CAS  Google Scholar 

  11. Okubo T (1988) Acc Chem Res 21:281

    Article  CAS  Google Scholar 

  12. Lowen H, Palberg T, Simon R (1993) Phys Rev Lett 70:1557

    Article  Google Scholar 

  13. Vehaeghe NAM, van Blaaderen A (1994) Langmuir 10:1427

    Article  Google Scholar 

  14. Okubo T (1993) Prog Polymer Sci 18:481

    Article  CAS  Google Scholar 

  15. Okubo T (2002) Encyclopedia of surface and colloid science. Marcell Dekker, New York, pp 1300–1309

    Google Scholar 

  16. Okubo T (2008) Polym J 40:882

    Article  CAS  Google Scholar 

  17. Russel WB (1990) Phase Trans 21:127

    Article  Google Scholar 

  18. Dhont JKG, Smits C, Lekkerkerker HNW (1992) b J Colloid Interf Sci 152:386

    Article  CAS  Google Scholar 

  19. Butler S, Harrowell P (1995) Phys Rev E 52:6424

    Article  CAS  Google Scholar 

  20. Okubo T, Suzuki D, Yamagata T, Katsuno A, Sakurai M, Kimura H, Tsuchida A (2011) Colloid Polymer Sci 289:291

    Article  CAS  Google Scholar 

  21. Okubo T, Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A (2011) Colloid Polymer Sci 289:1273

    Article  CAS  Google Scholar 

  22. Suzuki D, Horigome K, Yamagata T, Shibata K, Tsuchida A, Okubo T (2012) Colloid Polymer Sci 289:1799

    Article  Google Scholar 

  23. Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A, Okubo T (2012) Colloid Polymer Sci 289:1799

    Article  Google Scholar 

  24. Okubo T, Suzuki D, Shibata K, Tsuchida A (2012) Colloid Polymer Sci 290:1403

    CAS  Google Scholar 

  25. Okubo T, Suzuki D, Tsuchida A (2012) Colloid Polymer Sci. doi:10.1007/s00396-012-2770-3

  26. Okubo T, Fujii S, Aono K, Nakamura Y, Tsuchida A (2012) Colloid Polymer Sci. doi:10.1007/s00396-012-2850-4

  27. Stoeber W, Fink A, Bohn E (1968) J Colloid Interf Sci 26:62

    Article  CAS  Google Scholar 

  28. Iler RK (ed) (1979) The chemistry of silica. Wiley-Interscience, New York, chapt 4

  29. Okubo T, Okamoto J, Tsuchida A (2010) Colloid Polymer Sci 288:189

    Article  CAS  Google Scholar 

  30. Okubo T, Suzuki D, Yamagata T, Katsuno A, Mizutani M, Kimura H, Tsuchida A (2011) Colloid Polymer Sci 289:807

    Article  CAS  Google Scholar 

  31. Okubo T, Suzuki D, Tsuchida A (2012) Colloid Polymer Sci 290:411

    Article  CAS  Google Scholar 

  32. Okubo T, Suzuki D, Tsuchida A (2012) Colloid Polymer Sci 290:867

    CAS  Google Scholar 

  33. Okubo T, Suzuki D, Tsuchida A (2012) Colloid Polymer Sci 290:1901

    Article  CAS  Google Scholar 

  34. Okubo T, Fujii S, Aono K, Nakamura Y (2012) Colloid Polymer Sci. doi:10.1007/s00396-012–2825–5

  35. Okubo T (1987) Colloid Polymer Sci 265:522

    Article  CAS  Google Scholar 

  36. Ohki M, Osawa T, Tanaka G, Chihara H (eds) (1994) Dictionary of chemistry (Japanese). Tokyo Kagaku Dohjin Press, Tokyo, p799

  37. Okubo T (1996) Colloid Surf A 109:77

    Article  CAS  Google Scholar 

  38. Schaefer DW (1977) J Chem Phys 66:3980

    Article  CAS  Google Scholar 

  39. Alexander S, Chaikin PM, Grant P, Morales Gm Pincus P, Hone D (1984) J Chem Phys 80:5776

    Article  CAS  Google Scholar 

  40. Okubo T (1987) Ber Bunsenges Phys Chem 91:1064

    CAS  Google Scholar 

  41. Okubo T (1988) J Colloid Interf Sci 125:380

    Article  CAS  Google Scholar 

  42. Baker JA, Henderson D (1967) J Chem Phys 47:2856

    Article  Google Scholar 

  43. Wadachi M, Toda M (1972) J Phys Soc Jpn 32:1147

    Article  Google Scholar 

  44. Hachisu S, Kobayashi Y, Kose A (1973) J Colloid Interf Sci 42:342

    Article  CAS  Google Scholar 

  45. Brenner SL (1976) J Phys Chem 80:1473

    Article  CAS  Google Scholar 

  46. Takano K, Hachisu S (1977) J Chem Phys 67:2604

    Article  CAS  Google Scholar 

  47. Yoshimura S, Hachisu S (1985) J Phys (Paris) 46(C3):115

    Article  Google Scholar 

  48. Murray MJ, Sanders JV (1980) Phil Mag A42:721

    Google Scholar 

  49. Okubo T (1996) In: Salamone JC (ed) Polymer materials encyclopedia. Vol. 2/C, CRC Press, Boca Raton, pp1290–1298

  50. Okubo T, Fujita H (1996) Coll Polym Sci 274:368

    Article  CAS  Google Scholar 

  51. Mitaku S, Ohtsuki T, Kishimoto A, Okano K (1980) Jpn J Appl Phys 19:439

    Article  CAS  Google Scholar 

  52. Mitaku S, Ohtsuki T, Okano K (1980) Biophys Chem 71:411

    Article  Google Scholar 

  53. Hachisu S, Yoshimura S (1980) Nature 283:188

    Article  CAS  Google Scholar 

  54. Yoshimura S, Hachisu S (1983) Prog Colloid Polymer Sci 68:59

    Article  CAS  Google Scholar 

  55. Hachisu S (1990) Phase Transition 21:243

    Article  CAS  Google Scholar 

  56. Okubo T (1987) J Chem Phys 87:5528

    Article  CAS  Google Scholar 

  57. Shih WY, Smith WH, Aksay IA (1989) J Chem Phys 90:4506

    Article  CAS  Google Scholar 

  58. Okubo T (1990) J Chem Phys 93:8276

    Article  CAS  Google Scholar 

  59. Crandall RS, Williams R (1977) Science 198:293

    Article  CAS  Google Scholar 

  60. Groenewold J, Kegel WK (2004) J Phys Condens Matter 16:S4877

    Article  CAS  Google Scholar 

  61. Campbell AI, Anderson VJ, van Duijneveldt JS, Bartlett P (2005) Phys Rev Lett 94:208301

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Kinya Goto of Bando Chemical Ind., Ltd (Kobe, Japan) is thanked for his kind providing the suspension of the nano-sized pre-particles of diamond by the courtesy of Professor Takashi Nishino of Kobe University. Professor Dr. Akira Tsuchida is greatly appreciated for his ELS measurements and useful comments during this work. Mr. Akihiro Katsuno of Gifu University is acknowledged for his TEM measurements of the pre-particles of diamond. Financial supports from the Ministry of Education, Culture, Sports, Science and Technology, Japan for Exploratory Research and those for Scientific Research (B) from Japan Society for the Promotion of Science are greatly acknowledged during his stay in Yamagata University as a Guest Professor. The research funds from AMX Co. (Tokyo) are also appreciated deeply. Lastly, the author appreciates valuable comments offered from the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T. Distorted colloidal crystal of similar-sized aggregates (1.5 μm in diameter) of nano-sized diamond particles (4 nm in diameter). Colloid Polym Sci 291, 1623–1629 (2013). https://doi.org/10.1007/s00396-013-2896-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2896-y

Keywords

Navigation