Skip to main content
Log in

Influence of speciation in the release profiles and antimicrobial performance of electrospun ethylene vinyl alcohol copolymer (EVOH) fibers containing ionic silver ions and silver nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In the present study, tailor-made ethylene vinyl alcohol copolymer (EVOH) fibers containing different amounts of antimicrobial silver ions and nanoparticles were developed by electrospinning and subsequent thermal annealing. The morphology of the fibers was examined by scanning and transmission electron microscopy and thermal properties were characterized by differential scanning calorimetry. Speciation and controlled release of silver from the fibers was monitored by anodic stripping voltammetry and energy dispersive X-ray spectroscopy. Before aging, 100 % of the silver recovered from the electrospun structures was in ionic form to be instantly released in contact with moisture with varying temperature-dependent kinetics. Thermal annealing of the fibers at 100 °C for 1, 2, and 4 days prompted the gradual transformation of 70, 93–94, and 98–99 % of the total silver into nanoparticles homogeneously distributed along the fibers, which were mostly retained within them, producing a substantial decrease in their release capacity. Speciation and release profiles from the fibers were correlated with their antibacterial performance against Listeria monocytogenes and Salmonella enteric. This study is a step forward in the understanding of silver-based electrospun antimicrobial polymers and puts forth the suitability of EVOH for the development of targeted delivery systems in a number of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  CAS  Google Scholar 

  2. Wu H, Lin D, Zhang R, Pan W (2007) Facile synthesis and assembly of Ag/NiO nanofibers with high electrical conductivity. Chem Mater 19(8):1895–1897

    Article  CAS  Google Scholar 

  3. Francis L, Giunco F, Balakrishnan A, Marsano E (2010) Synthesis, characterization and mechanical properties of nylon–silver composite nanofibers prepared by electrospinning. Curr Appl Phys 10(4):1005–1008

    Article  Google Scholar 

  4. Jin M, Zhang X, Nishimoto S, Liu Z, Tryk DA, Emeline AV, Murakami T, Fujishima A (2007) Light-stimulated composition conversion in TiO<sub>2</sub>-based nanofibers. J Phys Chem C 111(2):658–665

    Article  CAS  Google Scholar 

  5. Patel AC, Li S, Wang C, Zhang W, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19(6):1231–1238

    Article  CAS  Google Scholar 

  6. Baptista AC, Martins JI, Fortunato E, Martins R, Borges JP, Ferreira I (2011) Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosens Bioelectron 26(5):2742–2745

    Article  CAS  Google Scholar 

  7. Wu H, Hu L, Rowell MW, Kong D, Cha JJ, McDonough JR, Zhu J, Yang Y, McGehee MD, Cui Y (2010) Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett 10(10):4242–4248

    Article  CAS  Google Scholar 

  8. Botes M, Cloete TE (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81

    Article  CAS  Google Scholar 

  9. Pant HR, Bajgai MP, Nam KT, Seo YA, Pandeya DR, Hong ST, Kim HY (2011) Electrospun nylon-6 spider-net like nanofiber mat containing TiO<sub>2</sub>nanoparticles: a multifunctional nanocomposite textile material. J Hazard Mater 185(1):124–130

    Article  CAS  Google Scholar 

  10. An J, Zhang H, Zhang J, Zhao Y, Yuan X (2009) Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid Polym Sci 287(12):1425–1434

    Article  CAS  Google Scholar 

  11. Tolaymat TM, El Badawy AM, Genaidy A, Schekel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006

    Article  CAS  Google Scholar 

  12. Chun JY, Kang HK, Jeong L, Kang YO, Oh JE, Yeo IS, Jung SY, Park WH, Min BM (2010) Epidermal cellular response to poly(vinyl alcohol) nanofibers containing silver nanoparticles. Colloids Surf B: Biointerfaces 78(2):334–342

    Article  CAS  Google Scholar 

  13. Rujitanaroj PO, Pimpha N, Supaphol P (2010) Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles. J Appl Polym Sci 116(4):1967–1976

    CAS  Google Scholar 

  14. Li Z, Huang H, Shang T, Yang F, Zheng W, Wang C, Manohar SK (2006) Facile synthesis of single-crystal and controllable sized silver nanoparticles on the surfaces of polyacrylonitrile nanofibres. Nanotechnol 17(3):917–920

    Article  CAS  Google Scholar 

  15. Sichani GN, Morshed M, Amirnasr M, Abedi D (2010) In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles. J Appl Polym Sci 116(2):1021–1029

    CAS  Google Scholar 

  16. Jeon HJ, Kim JS, Kim TG, Kim JH, Yu WR, Youk JH (2008) Preparation of poly(ε-caprolactone)-based polyurethane nanofibers containing silver nanoparticles. Appl Surf Sci 254(18):5886–5890

    Article  CAS  Google Scholar 

  17. Jin WJ, Jeon HJ, Kim JH, Youk JH (2007) A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles. Synth Met 157(10–12):454–459

    Article  CAS  Google Scholar 

  18. Sheikh FA, Barakat NAM, Kanjwal MA, Chaudhari AA, Jung IH, Lee JH, Kim HY (2009) Electrospun antimicrobial polyurethane nanofibers containing silver nanoparticles for biotechnological applications. Macromol Res 17(9):688–696

    Article  CAS  Google Scholar 

  19. Penchev H, Paneva D, Manolova N, Rashkov I (2010) Hybrid nanofibrous yarns based on N-carboxyethylchitosan and silver nanoparticles with antibacterial activity prepared by self-bundling electrospinning. Carbohydr Res 345(16):2374–2380

    Article  CAS  Google Scholar 

  20. Lee DY, Lee KH, Kim BY, Cho NI (2010) Silver nanoparticles dispersed in electrospun polyacrylonitrile nanofibers via chemical reduction. J Sol–Gel Part Sci Technol 54(1):63–68

    Article  CAS  Google Scholar 

  21. Dong H, Wang D, Sun G, Hinestroza JP (2008) Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions. Chem Mater 20(21):6627–6632

    Article  CAS  Google Scholar 

  22. Park SW, Bae HS, Xing ZC, Kwon OH, Huh MW, Kang IK (2009) Preparation and properties of silver-containing nylon 6 nanofibers formed by electrospinning. J Appl Polym Sci 112(4):2320–2326

    Article  CAS  Google Scholar 

  23. Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G (2010) Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res A 93(2):716–723

    Google Scholar 

  24. Kanjwal MA, Barakat NAM, Sheikh FA, Baek W, Khil MS, Kim HY (2010) Effects of silver content and morphology on the catalytic activity of silver-grafted titanium oxide nanostructure. Fibers Polym 11(5):700–709

    Article  CAS  Google Scholar 

  25. Lin D, Wu H, Zhang R, Pan W (2009) Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers. Chem Mater 21(15):3479–3484

    Article  CAS  Google Scholar 

  26. Costa RGF, Ribeiro C, Mattoso LHC (2010) Preparation and characterization of PVA-Ag nanocomposite fibers with antibacterial activities. Sci Adv Mater 2(2):157–162

    Article  CAS  Google Scholar 

  27. Son B, Yeom BY, Song SH, Lee CS, Hwang TS (2009) Antibacterial electrospun chitosan/poly(vinyl alcohol) nanofibers containing silver nitrate and titanium dioxide. J Appl Polym Sci 111(6):2892–2899

    Article  CAS  Google Scholar 

  28. Lee S (2009) Multifunctionality of layered fabric systems based on electrospun polyurethane/zinc oxide nanocomposite fibers. J Appl Polym Sci 114(6):3652–3658

    Article  CAS  Google Scholar 

  29. Horzum N, Boyaci E, Eroǧlu AE, Shahwan T, Demir MM (2010) Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations. Biomacromolecules 11(12):3301–3308

    Article  CAS  Google Scholar 

  30. Hong KH (2007) Preparation and properties of electrospun poly (vinyl alcohol)/silver fiber web as wound dressings. Polym Eng Sci 47(1):43–49

    Article  CAS  Google Scholar 

  31. Hong KH, Park JL, Hwan Sul IN, Youk JH, Kang TJ (2006) Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. J Polym Sci B Polym Phys 44(17):2468–2474

    Article  CAS  Google Scholar 

  32. Park JH, Karim MR, Kim IK, Cheong IW, Kim JW, Bae DG, Cho JW, Yeum JH (2010) Electrospinning fabrication and characterization of poly(vinyl alcohol)/montmorillonite/silver hybrid nanofibers for antibacterial applications. Colloid Polym Sci 288(1):115–121

    Article  CAS  Google Scholar 

  33. Liu S, He J, Xue J, Ding W (2009) Efficient fabrication of transparent antimicrobial poly(vinyl alcohol) thin films. J Nanoparticle Res 11(3):553–560

    Article  CAS  Google Scholar 

  34. Barakat NAM, Woo KD, Kanjwal MA, Choi KE, Khil MS, Kim HY (2008) Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique. Langmuir 24(20):11982–11987

    Article  CAS  Google Scholar 

  35. Martínez-Abad A, Lagaron JM, Ocio MJ (2012) Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for food-packaging applications. J Agric Food Chem 60(21):5350–5359

    Article  Google Scholar 

  36. Kenawy ER, Layman JM, Watkins JR, Bowlin GL, Matthews JA, Simpson DG, Wnek GE (2003) Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials 24(6):907–913

    Article  CAS  Google Scholar 

  37. Tian S, Ogata N, Shimada N, Nakane K, Ogihara T, Yu M (2009) Melt electrospinning from poly(l-lactide) rods coated with poly(ethylene-co-vinyl alcohol). J Appl Polym Sci 113(2):1282–1288

    Article  CAS  Google Scholar 

  38. Shimada N, Tsutsumi H, Nakane K, Ogihara T, Ogata N (2010) Poly(ethylene-co-vinyl alcohol) and nylon 6/12 nanofibers produced by melt electrospinning system equipped with a line-like laser beam melting device. J Appl Polym Sci 116(5):2998–3004

    CAS  Google Scholar 

  39. Wang B, Xu C, Xu F, Lu T (2011) Electrospinning of poly(ethylene-co-vinyl alcohol) nanofibres encapsulated with Ag nanoparticles for skin wound healing. J Nanomaterials. doi:10.1155/2011/201834

  40. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283

    Article  CAS  Google Scholar 

  41. Choi O, Clevenger TE, Deng B, Surampalli RY, Ross L Jr, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43(7):1879–1886

    Article  CAS  Google Scholar 

  42. Martínez-Abad A, Sánchez G, Lagaron JM, Ocio MJ (2012) On the different growth conditions affecting silver antimicrobial efficacy on Listeria monocytogenes and Salmonella enterica. Int J Food Microbiol 158(2):147–154

    Article  Google Scholar 

  43. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag<sup>+</sup>Cu<sup>2+</sup>Zn<sup>2+</sup>) in hydroxyapatite. J Mater Sci: Mater Med 9(3):129–134

    Article  Google Scholar 

  44. Hwang MG, Katayama H, Ohgaki S (2007) Inactivation of Legionella pneumophila and Pseudomonas aeruginosa: evaluation of the bactericidal ability of silver cations. Water Res 41(18):4097–4104

    Article  CAS  Google Scholar 

  45. Bjarnsholt T, Kirketerp-Møller K, Kristiansen S, Phipps R, Nielsen AK, Jensen PØ, Høiby N, Givskov M (2007) Silver against Pseudomonas aeruginosa biofilms. APMIS 115(8):921–928

    Article  CAS  Google Scholar 

  46. Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59(4):587–590

    Article  CAS  Google Scholar 

  47. Šimon P, Chaudhry Q, Bakoš D (2008) Migration of engineered nanoparticles from polymer packaging to food—a physicochemical view. J Food Nutr Res 47(3):105–113

    Google Scholar 

  48. Saquing CD, Manasco JL, Khan SA (2009) Electrospun nanoparticle–nanofiber composites via a one-step synthesis. Small 5(8):944–951

    Article  CAS  Google Scholar 

  49. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637

    Article  CAS  Google Scholar 

  50. Lee HK, Jeong EH, Baek CK, Youk JH (2005) One-step preparation of ultrafine poly(acrylonitrile) fibers containing silver nanoparticles. Mater Lett 59(23):2977–2980

    Article  CAS  Google Scholar 

  51. Dong G, Xiao X, Liu X, Qian B, Liao Y, Wang C, Chen D, Qiu J (2009) Functional Ag porous films prepared by electrospinning. Appl Surf Sci 255(17):7623–7626

    Article  CAS  Google Scholar 

  52. Joyce-Wöhrmann RM, Münstedt H (1999) Determination of the silver ion release from polyurethanes enriched with silver. Infection 27(suppl 1)

  53. Ward TJ, Kramer JR (2002) Silver speciation during chronic toxicity tests with the mysid, Americamysis bahia. Comp Biochem Physiol C Toxicol Pharmacol 133(1–2):75–86

    Article  Google Scholar 

  54. Zhang Z, Britt IJ, Tung MA (1999) Water absorption in EVOH films and its influence on glass transition temperature. J Polym Sci B Polym Phys 37(2–7):691–699

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Spanish MICINN (project MAT2009-14533-C02-01) for financial support. A. Martinez-Abad thanks the Spanish Research Council (CSIC) for financial support under grant JAEPre-092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Ocio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Abad, A., Sanchez, G., Lagaron, J.M. et al. Influence of speciation in the release profiles and antimicrobial performance of electrospun ethylene vinyl alcohol copolymer (EVOH) fibers containing ionic silver ions and silver nanoparticles. Colloid Polym Sci 291, 1381–1392 (2013). https://doi.org/10.1007/s00396-012-2870-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2870-0

Keywords

Navigation