Skip to main content
Log in

Preparation of titania hollow particles with independently controlled void size and shell thickness by catalytic templating core–shell polymer particles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Organic/inorganic hybrids were prepared by catalytic hydrolysis and subsequent polycondensation of tetra-n-butyl titanate (TnBT) in shell layers grafted on core particles. The core particles were synthesized by emulsifier-free emulsion polymerization of styrene, N-n-butyl-N-2-methacryloyloxyethyl-N,N-dimethylammonium bromide (C4DMAEMA), and 2-chloropropionyloxyethyl methacrylate using 2,2′-azobis(2-amidinopropane) dihydrochloride as an initiator. The core diameters were controlled in the range of 70–550 nm by adjusting a C4DMAEMA feed concentration. The core–shell particles were prepared by surface-initiated activator generated electron transfer–atom transfer radical polymerization of 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA). The sizes of core–shell particles were found to increase monotonically with an increase in a DMAEMA concentration. The hybrid particles were fabricated by adding TnBT into a water/ethanol dispersion of core–shell particles. The amounts of titania deposited increased in proportion to the grafted amounts of poly[2-(N,N-dimethylamino)ethyl methacrylate] on the core particles. The X-ray diffraction measurement revealed that the hollow titania particles obtained by heat treatment of hybrids have an anatase crystallographic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Farrokhpay S (2009) A review of polymeric dispersant stabilisation of titania pigment. Adv Colloid Interface Sci 151:24–32

    Article  CAS  Google Scholar 

  2. Farrokhpay S, Morris EG, Fornasiero D (2006) Titania pigment particles dispersion in water-based paint films. JCT Res 3:275–283

    CAS  Google Scholar 

  3. Ferroni M, Guidi V, Martinelli G (1996) Characterization of a nanosized TiO2 gas sensor. Nanostr Mater 7:709–718

    Article  CAS  Google Scholar 

  4. Baratont MI, Merhari L (1998) Surface property control of semiconducting metal oxide nanoparticles. Nanostr Mater 10:699–713

    Article  Google Scholar 

  5. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  6. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  7. Levy B (1997) Photochemistry of nanostructured materials for energy applications. J Electroceram 1:239–272

    Article  CAS  Google Scholar 

  8. Wang ZS, Kawauchi H, Kashima T, Arakawa H (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248:1381–1389

    Article  CAS  Google Scholar 

  9. Wu JM, Zhang TW (2005) Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity. Langmuir 21:6995–7002

    Article  CAS  Google Scholar 

  10. Liu D, Yates MZ (2007) Fabrication of size-tunable TiO2 tubes using rod-shaped calcite templates. Langmuir 23:10333–10341

    Article  CAS  Google Scholar 

  11. Yi DK, Yoo SJ, Kim DY (2002) Spin-on-based fabrication of titania nanowires using a sol–gel process. Nano Lett 2:1101–1104

    Article  CAS  Google Scholar 

  12. Ao Y, Xu J, Fu D, Yuan C (2008) A simple method for the preparation of titania hollow sphere. Catal Comm 9:2574–2577

    Article  CAS  Google Scholar 

  13. Song C, Yu W, Zhao B, Zhang H, Tang C, Sun K, Wua X, Dong L, Chen Y (2009) Efficient fabrication and photocatalytic properties of TiO2 hollow spheres. Catal Comm 10:650–654

    Article  CAS  Google Scholar 

  14. Kondo Y, Yoshikawa H, Awaga K, Murayama M, Mori T, Sunada K, Bandow S, Iijima S (2008) Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir 24:547–550

    Article  CAS  Google Scholar 

  15. Li H, Bian Z, Zhu J, Zhang D, Li G, Huo Y, Li H, Lu Y (2007) Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407

    Article  CAS  Google Scholar 

  16. Imhof A (2001) Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir 17:3579–3585

    Article  CAS  Google Scholar 

  17. Cheng X, Chen M, Limin Wu L, Gu G (2006) Novel and facile method for the preparation of monodispersed titania hollow spheres. Langmuir 22:3858–3863

    Article  CAS  Google Scholar 

  18. Caruso F, Shi X, Caruso RA, Susha A (2001) Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles. Adv Mater 13:740–744

    Article  CAS  Google Scholar 

  19. Agrawal M, Pich A, Zafeiropoulos NE, Stamm M (2008) Fabrication of hollow titania microspheres with tailored shell thickness. Colloid Polym Sci 286:593–601

    Article  CAS  Google Scholar 

  20. Yu J, Liu W, Yu H (2008) A One-Pot Approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity. Cryst Growth Des 8:930–934

    Article  CAS  Google Scholar 

  21. Yang HG, Zeng HC (2004) Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J Phys Chem B 108:3492–3495

    Article  CAS  Google Scholar 

  22. Wang XM, Xiao P (2005) Non-template synthesis of titania hollow spheres and their thermal stability. J Mater Res 20:796–800

    Article  CAS  Google Scholar 

  23. Taniguchi T, Kashiwakura T, Inada T, Kunisada Y, Kasuya M, Kohri M, Nakahira T (2010) Preparation of organic/inorganic composites by deposition of silica onto shell layers of polystyrene (core)/poly[2-(N, N-dimethylamino)ethyl methacrylate] (shell) particles. J Colloid Interface Sci 347:62–68

    Article  CAS  Google Scholar 

  24. Taniguchi T, Inada T, Kashiwakura Murakami F, Kohri M, Nakahira T (2011) Preparation of polymer core–shell particles supporting gold nanoparticles. Coll Surf A 377:63–69

    Article  CAS  Google Scholar 

  25. Taniguchi T, Obi S, Kamata Y, Kashiwakura T, Kasuya M, Ogawa T, Kohri M, Nakahira T (2012) Preparation of organic/inorganic hybrid and hollow particles by catalytic deposition of silica onto core/shell heterocoagulates modified with poly[2-(N, N-dimethylamino)ethyl methacrylate]. J Colloid Interface Sci 368:107–114

    Article  CAS  Google Scholar 

  26. Queffelec J, Gaynor SG, Matyjaszewski K (2000) Optimization of atom transfer radical polymerization using Cu(I)/tris(2-(dimethylamino)ethyl)amine as a catalyst. Macromolecules 33:8629–8639

    Article  CAS  Google Scholar 

  27. Nagai K, Ohishi Y, Inaba H, Kudo S (1985) Polymerization of surface-active monomers. I. Micellization and polymerization of higher alkyl salts of dimethylaminoethyl methacrylate. J Polym Sci: Polym Chem Ed 23:1221–1230

    Article  CAS  Google Scholar 

  28. Matyjaszewski K, Gaynor SG, Kulfan A, Podwika M (1997) Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. Acrylic AB* monomers in “living” radical polymerizations. Macromolecules 30:5192–5194

    Article  CAS  Google Scholar 

  29. Taniguchi T, Ohashi T, Yamaguchi K, Nagai K (2000) Chemical immobilization of polymeric microspheres onto inorganic solid surfaces. Macromol Symp 151:529–534

    Article  CAS  Google Scholar 

  30. Yamaguchi K, Taniguchi T, Kawaguchi S, Nagai K (2002) Immobilization of cationic polymer particles having active ester groups onto solid surfaces. Colloid Polym Sci 280:942–948

    Article  CAS  Google Scholar 

  31. Taniguchi T, Kasuya M, Kunisada Y, Miyai T, Nagasawa H, Nakahira T (2009) Surface modification of polymer latex particles by AGET ATRP of a styrene derivative bearing a lactose residue. Colloids Surf B: Biointerfaces 71:194–199

    Article  CAS  Google Scholar 

  32. Ceska GW (1974) The effect of carboxylic monomers on surfactant-free emulsion copolymerization. J Appl Polym Sci 18:427–437

    Article  CAS  Google Scholar 

  33. Ceska GW (1974) Carboxyl-stabilized emulsion polymers. J Appl Polym Sci 18:2493–2499

    Article  CAS  Google Scholar 

  34. Ganachaud F, Sauzedde F, Elaïssari A, Pichot C (1997) Emulsifier-free emulsion copolymerization of styrene with two different amino-containing cationic monomers. I. Kinetic studies. J Appl Polym Sci 65:2315–2330

    Article  CAS  Google Scholar 

  35. Sauzedde F, Ganachaud F, Elaïssari A, Pichot C (1997) Emulsifier-free emulsion copolymerization of styrene with two different amino-containing monomers: II. Surface and colloidal characterization. J Appl Polym Sci 65:2331–2342

    Article  CAS  Google Scholar 

  36. Chu HH, Ou ED (2000) Emulsion polymerization of 2-hydroxyethyl methacrylate and partition of monomer between particles and water phase. Polym Bull 44:337–344

    Article  CAS  Google Scholar 

  37. Imroz Ali AM, Tauer K, Sedlak M (2005) Comparing emulsion polymerization of methacrylate monomers with different hydrophilicity. Polymer 46:1017–1023

    Article  CAS  Google Scholar 

  38. Zheng G, Stöver HDH (2002) Grafting of polystyrene from narrow disperse polymer particles by surface-initiated atom transfer radical polymerization. Macromolecules 35:6828–6834

    Article  CAS  Google Scholar 

  39. Polpanich D, Tangboriboonrat P, Elaïssari A (2005) The effect of acrylic acid amount on the colloidal properties of polystyrene latex. Colloid Polym Sci 280:152–159

    Google Scholar 

  40. Chen HJ, Wang L, Chiu WY (2007) Chelation and solvent effect on the preparation of titania colloids. Mater Chem Phys 101:12–19

    Article  CAS  Google Scholar 

  41. Zhang T, Tian B, Kong J, Yang P, Liu B (2003) A sensitive mediator-free tyrosinase biosensor based on an inorganic–organic hybrid titania sol–gel matrix. Anal Chim Acta 489:199–206

    Article  CAS  Google Scholar 

  42. Lee AS, Bütün V, Vamvakaki M, Armes SP, Pople JA, Gast AP (2002) Structure of pH-dependent block copolymer micelles: charge and ionic strength dependence. Macromolecules 35:8540–8551

    Article  CAS  Google Scholar 

  43. Plunkett KN, Moore JS (2004) Patterned dual pH-responsive core–shell hydrogels with controllable swelling kinetics and volumes. Langmuir 20:6535–6537

    Article  CAS  Google Scholar 

  44. Valtchev V (2002) Silicalite-1 hollow spheres and bodies with a regular system of macrocavities. Chem Mater 14:4371–4377

    Article  CAS  Google Scholar 

  45. Zhang YB, Qian XF, Xi HA, Yin J, Zhu ZK (2003) Preparation of polystyrene core–mesoporous silica nanoparticles shell composite. Mater Lett 58:222–225

    Article  Google Scholar 

  46. Seyedjamali H, Pirisedigh A (2011) Synthesis and morphology of new functional polyimide/titania nano hybrid materials. J Mater Sci 46:6744–6750

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Sekisui Chemical for TEM observation. We gratefully acknowledge Nippon Steel Chemical for providing some of the reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Taniguchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 163 kb)

Fig. S2

(DOC 7697 kb)

Fig. S3

(DOC 1140 kb)

Fig. S4

(DOC 2897 kb)

Fig. S5

(DOC 1175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniguchi, T., Murakami, F., Kasuya, M. et al. Preparation of titania hollow particles with independently controlled void size and shell thickness by catalytic templating core–shell polymer particles. Colloid Polym Sci 291, 215–222 (2013). https://doi.org/10.1007/s00396-012-2658-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2658-2

Keywords

Navigation