Skip to main content
Log in

pH-sensitive nanostructured architectures based on synthetic and/or natural weak polyelectrolytes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This study aims to evidence the influence of polyelectrolytes structure and the number of double layers on the properties of some new nanostructured architectures formed by layer-by-layer self-assembly of complementary weak polyelectrolytes on planar surfaces. For this purpose, we used chitosan and poly(allylamine hydrochloride) as polycations, and poly(acrylic acid) and poly(2-acrylamido-2-methylpropanesulfonic acid–co-acrylic acid) as polyanions. To get a direct image on the polyelectrolyte multilayers formation and properties, gravimetry, infrared spectroscopy, and atomic force microscopy have been used. The capacity of the polyions to overcompensate the complementary polyions charges, and thus to influence the swelling degree in water of thin films, was strongly influenced by the chain structure and flexibility. A special attention was paid to the responsiveness of the new composite materials to the pH of the swelling environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

CS:

Chitosan

hmax :

Maximum height on film surface

K:

Surface kurtosis

LbL:

Layer-by-layer

P:

Polymer-adsorbed amount

PAA:

Poly(acrylic acid)

PAH:

Poly(allylamine hydrochloride)

PAMPSAA:

Poly(2-acrylamido-2-methyl propanesulfonic acid - co - acrylic acid)

pzc:

Point of zero charge

Ra :

Average surface roughness

RMS:

Root-mean-square roughness

SD:

Swelling degree

SK:

Surface skewness

References

  1. Dufresne MH, Le Garrec D, Sant V, Leroux JC, Ranger M (2004) Preparation and characterization of water-soluble pH-sensitive nanocarriers for drug delivery. Int J Pharm 277:81–90

    Article  CAS  Google Scholar 

  2. Gu JX, Xia F, Wu Y, Qu XZ, Yang ZZ, Jiang L (2007) Programmable delivery of hydrophilic drug using dually responsive hydrogel cages. J Contr Release 117:396–402

    Article  CAS  Google Scholar 

  3. Jhaveri SJ, Hynd MR, Dowell-Mesfin N, Turner JN, Shain W, Ober CK (2009) Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells. Biomacromolecules 10:174–183

    Article  CAS  Google Scholar 

  4. Mart RJ, Osborne RD, Stevens MM, Ulijn RV (2006) Peptide-based stimuli responsive biomaterials. Soft Matter 2:822–835

    Article  CAS  Google Scholar 

  5. Motornov M, Minko S, Eichhorn KJ, Nitschke M, Simon F, Stamm M (2003) Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes. Langmuir 19:8077–8085

    Article  CAS  Google Scholar 

  6. Alarcon CDH, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285

    Article  CAS  Google Scholar 

  7. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Article  CAS  Google Scholar 

  8. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835

    Article  Google Scholar 

  9. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 27:1232–1237

    Article  Google Scholar 

  10. Boudou T, Crouzier T, Ren K, Blin G, Picart C (2009) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 21:1–27

    Google Scholar 

  11. Dragan ES, Mihai M, Schauer J, Ghimici L (2005) PAN composite membrane with different solvent affinities controlled by surface modification methods. J Polymer Polymer Chem 43:4161–4171

    Article  CAS  Google Scholar 

  12. Schwarz S, Nagel J, Janke A, Jaeger W, Bratskaya S (2006) Adsorption of polyelectrolytes with hydrophobic parts. Progr Colloid Polymer Sci 132:102–109

    Article  CAS  Google Scholar 

  13. Licea-Claverie A, Schwarz S, Simon F, Urzua-Sanchez O, Nagel J, Pleul D, Eichhorn K-J, Janke A (2005) Poly(dimethylaminoethylmethacrylate) hydrochloride (PDMAEM-HCI) a well behaving polycation for multilayer formation on planar surfaces. Colloid Polymer Sci 283:826–835

    Article  CAS  Google Scholar 

  14. Tang Z, Wang Y, Podsiadlo P, Kotov NA (2006) Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater 18:3203–3224

    Article  CAS  Google Scholar 

  15. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  Google Scholar 

  16. Shiratori SS, Rubner MF (2000) pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33:4213–4219

    Article  CAS  Google Scholar 

  17. Kharlampieva E, Sukhishvili SA (2003) Ionization and pH stability of multilayers formed by self-assembly of weak polyelectrolytes. Langmuir 19:1235–1243

    Article  CAS  Google Scholar 

  18. Dubas ST, Farhat TR, Schlenoff JB (2001) Multiple membranes from “true” polyelectrolyte multilayers. J Am Chem Soc 123:5368–5369

    Article  CAS  Google Scholar 

  19. Yan XL, Khor E, Lim L-Y (2001) Chitosan-alginate films prepared with chitosans of different molecular weights. J Biomed Mater Res B Appl Biomater 58:358–365

    Article  CAS  Google Scholar 

  20. Wang L, Khor E, Wee A, Lim L-Y (2002) Chitosan-alginate PEC membrane as a wound dressing: assessment of incisional wound healing. J Biomed Mater Res B Appl Biomater 63:610–618

    Article  CAS  Google Scholar 

  21. Kubota N, Kikuchi Y (1998) Macromolecular complexes of chitosan. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 595–628

    Google Scholar 

  22. Franklin JJ, Snow A (1981) Biochemistry of antimicrobial action, 3rd edn. Chapman Hall, London, p 217

    Google Scholar 

  23. De Giglio E, Cafagna D, Ricci MA, Sabbatini L, Cometa S, Ferretti C, Mattioli-Belmonte M (2010) Biocompatibility of poly(acrylic acid) thin coatings electro-synthesized onto TiAlV-based implants. J Bioact Compat Polym 25:374–391

    Article  Google Scholar 

  24. Paneva D, Stoilova O et al. (2003) Novel polyelectrolyte complex between chitosan and poly(2-acryloylamido-2-methylpropanesulfonic acid-co-acrylic acid). e-Polymers no:052

  25. Gamzazade AI, Shimac VM, Skljar AM, Stykova EV, Pavlova SA, Rogozin SV (1985) Investigation of the hydrodynamic properties of chitosan solutions. Acta Polymerica 36:420–424

    Article  CAS  Google Scholar 

  26. Hirai A, Odani H, Nakajima A (1991) Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym Bull 26:87–94

    Article  CAS  Google Scholar 

  27. Dragan S, Cristea M, Luca C, Simionescu BC (1996) Polyelectrolyte complexes. I. Synthesis and characterization of some insoluble polyanion-polycation complexes. J Polymer Sci Polymer Chem 34:3485–3494

    CAS  Google Scholar 

  28. Iliopoulos I, Auderbert R (1991) Complexation of acrylic acid copolymers with polybases: importance of cooperative effects. Macromolecules 24:2566–2575

    Article  CAS  Google Scholar 

  29. Mihai M, Dragan ES, Schwarz S, Janke A (2007) Dependency of particle sizes and colloidal stability of polyelectrolyte complex dispersions on polyanion structure and preparation mode investigated by dynamic light scattering and atomic force microscopy. J Phys Chem B 111:8668–8675

    Article  CAS  Google Scholar 

  30. Milekhin AG, Himcinschi C, Friedrich M, Hiller K, Wiemer M (2006) Infrared spectroscopy of bonded silicon wafers. Semiconductors 40:1304–1313

    Article  CAS  Google Scholar 

  31. Pretsch E, Bülmann P, Affolter C (2000) IR spectroscopy. in Structure determination of organic compounds. Tables of spectral data, 3rd edn. Springer, Berlin Heidelberg, pp 245–312

    Google Scholar 

  32. Wong JE, Rehfeldt F, Hänni P, Tanaka M, v Klitzing R (2004) Swelling behavior of polyelectrolyte multilayers in saturated water vapor. Macromolecules 37:7285–7289

    Article  CAS  Google Scholar 

  33. Schönhoff M, Ball V, Bausch AR, Dejugnat C, Delorme N, Glinel K, v Klitzing R, Steitz R (2007) Hydration and internal properties of polyelectrolyte multilayers. Colloid Surface Physicochem Eng Aspect 303:14–29

    Article  Google Scholar 

  34. Tanchak OM, Yager KG, Fritzsche H, Harroun T, Katsaras J, Barrett CJ (2006) Water distribution in multilayers of weak polyelectrolytes. Langmuir 22:5137–5143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of European Social Fund–“Cristofor I. Simionescu” Postdoctoral Fellowship Program (ID POSDRU/89/1.5/S/55216) is gratefully acknowledged. Dr. Dilyana Paneva is acknowledged for PAMPSAA sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Mihai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihai, M., Stoica, I. & Schwarz, S. pH-sensitive nanostructured architectures based on synthetic and/or natural weak polyelectrolytes. Colloid Polym Sci 289, 1387–1396 (2011). https://doi.org/10.1007/s00396-011-2462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2462-4

Keywords

Navigation