Skip to main content
Log in

Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Electrophoretic mobilities (EPM) of negatively charged latex spheres were measured as a function of salt type and salt concentration. The measured values of EPM were analyzed using a standard electrokinetic model that includes double layer relaxation and the Poisson–Boltzmann model of diffuse double layer. Calculated values of EPM were in good agreement with experimental data taken in simple 1:1 (KCl) and 1:2 (Na2SO4) electrolyte solutions without using any fit parameters. For 2:1 electrolytes (CaCl2 and MgCl2), however, the magnitude of EPM calculated by the model was higher than the measured values of EPM at higher electrolyte concentrations. The difference between measured and calculated EPM was reduced by assuming the distance of slipping plane x s = 0.25 nm or by assuming the decrease of the magnitude of surface charge density from −0.07 to −0.025 C/m2. These are probably due to the accumulation of divalent counterions in the vicinity of a particle’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ohshima H, Furusawa K (eds) (1998) In: Electrical phenomena at interfaces. 2nd edn. Marcel Dekker, New York

  2. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena, 1st edn. Wiley, Hoboken

    Google Scholar 

  3. Elimelech M, Gregory J, Jia X, Williams RA (1998) Particle deposition & aggregation, paperback edn. Butterworth-Heinemann, Woburn

    Google Scholar 

  4. von Smoluchowski M (1903) Bull Int Acad Sci Cracov 8:182–200

    Google Scholar 

  5. Henry DC (1931) Proc R Soc Lond 133A:106–129

    Google Scholar 

  6. Huckel E (1924) Phys Z 25:204–210

    Google Scholar 

  7. Booth F (1950) Proc R Soc Lond 203A:514–533

    Google Scholar 

  8. Overbeek JThG (1943) Kolloide Beihefte 54:287–364

    CAS  Google Scholar 

  9. Wiersmema PH, Loeb AL, Overbeek JThG (1966) J Colloid Interface Sci 22:78–99

    Article  Google Scholar 

  10. O’Brien RW, White LR (1978) J Chem Soc Faraday Trans 2(74):1607–1626

    Google Scholar 

  11. Ohshima H, Healy TW, White LR (1983) J Chem Soc Faraday Trans 2(79):1613–1628

    Google Scholar 

  12. Ohshima H (2005) Colloids Surf A 267:50–55

    Article  CAS  Google Scholar 

  13. O’Brien RW, Hunter RJ (1981) Can J Chem 59:1878–1887

    Article  CAS  Google Scholar 

  14. Dukhin SS, Semenikhin NM (1970) Kolloid Zh 32:360–368

    CAS  Google Scholar 

  15. Hidalgo-Alvarez R, Martin A, Fernandez A, Bastos D, Martinez F, de las Nieves (1996) Adv Colloid Interface Sci 67:1–118

    Article  CAS  Google Scholar 

  16. Elimelech M, O’Melia CR (1990) Colloids Surf 44:165–178

    Article  CAS  Google Scholar 

  17. Bastos-Gonzalez D, Hidalgo-Alvarez R, de las Nieves FJ (1996) J Colloid Interface Sci 177:372–379

    Article  CAS  Google Scholar 

  18. Borkovec M, Behrens SH, Semmler M (2000) Langmuir 16:2566–2575

    Article  Google Scholar 

  19. Antonietti M, Vorwerg L (1997) Colloid Polym Sci 275:883–887

    Article  CAS  Google Scholar 

  20. Bastos D, de las Nieves FJ (1993) Colloid Polym Sci 271:860–867

    Article  CAS  Google Scholar 

  21. Quesada-Perez M, Gonzarez-Tovar E, Martin-Molina A, Lozada-Cassou M, Hidalgo-Alvarez R (2005) Colloids Surf A 267:24–30

    Article  CAS  Google Scholar 

  22. Martin-Molina A, Quesada-Perez M, Galisteo-Gonzalez F, Hidalgo-Alvarez R (2004) Prog Colloid Polym Sci 123:114–118

    CAS  Google Scholar 

  23. Labbez C, Nonat A, Isabelle P, Jonsson B (2007) J Colloid Interface Sci 309:303–307

    Article  CAS  Google Scholar 

  24. Behrens SH, Christl DI, Emmerzael R, Schurtenberger P, Borkovec M (2000) Langmuir 16:5209–5212

    Article  Google Scholar 

  25. Lin W, Kobayashi M, Skarba M, Mu C, Galletto P, Borkovec M (2006) Langmuir 22:1038–1047

    Article  CAS  Google Scholar 

  26. Chow RS, Takamura K (1988) J Colloid Interface Sci 125:212–225

    Article  CAS  Google Scholar 

  27. Chow RS, Takamura K (1988) J Colloid Interface Sci 125:226–236

    Article  CAS  Google Scholar 

  28. Malvern Instrument (2004) Zetasizer Nano series user manual

  29. Ohshima H (2006) Theory of colloid and interfacial electronic phenomena, 1st edn. Academic, London

    Book  Google Scholar 

  30. Morisaki H, Nagai S, Ohshima H, Ikemoto E, Kogure K (1999) Microbiology 145:2797–2802

    CAS  Google Scholar 

  31. Lide DR (ed) (2001) In: CRC handbook of chemistry and physics. 82th edn. CRC, Boca Raton

  32. The Chemical Society of Japan (ed) (2004) In: Kagaku Binran. 5th edn. Maruzen, Tokyo

  33. Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic, London

    Google Scholar 

Download references

Acknowledgement

This work was financially supported by the MEXT KAKENHI (18688013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyoshi Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, M. Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling. Colloid Polym Sci 286, 935–940 (2008). https://doi.org/10.1007/s00396-008-1851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1851-9

Keywords

Navigation