Skip to main content
Log in

The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the mechanism of beta-adrenergic preconditioning (BPC). The roles of adenosine and its receptor subtypes, the generation of oxygen free radicals (ROS) and activation of the KATP channels as well as the phosphoinositide-3-kinase (PI3K)/PKB/Akt and extracellular signal-regulated kinase (ERK) signal transduction pathways during the triggering and mediation phases were evaluated. Using the isolated working rat heart, BPC was elicited by administration of denopamine (beta1 adrenergic receptor agonist, 10−7 M), isoproterenol (beta1/beta2 adrenergic receptor agonist, 10−7 M) or formoterol (beta2 adrenergic receptor agonist, 10−9 M) for 5 min followed by 5 min washout. Index ischaemia was 35 min regional ischaemia and infarct size determined using the tetrazolium method. The role of adenosine was studied using adenosine deaminase and selective antagonists as well as the PI3K and ERK inhibitors, wortmannin and PD98,059, bracketing the triggering and mediating phases. Involvement of ROS, PKC, the mitochondrial KATP channels, release of endogenous opioids and bradykinin was studied by administration of N-acetyl cysteine (NAC), bisindolylmaleimide, the KATP channel blocker 5-hydroxydecanoate (5-HD), naloxone or HOE140, respectively. Activation of PKB/Akt and ERKp44/p42 during triggering and reperfusion was determined by Western blot. Preconditioning with all three beta-adrenergic receptor agonists caused a reduction in infarct size and an improvement in postischaemic function. BPC preconditioning with isoproterenol, denopamine or formoterol was abolished by the adenosine A3 receptor antagonist MRS1191 during both the triggering and

mediation phases. Isoproterenol-induced preconditioning (beta1/beta2 PC) was attenuated by MRS1754, an adenosine A2B receptor antagonist, during the triggering phase and abolished during reperfusion. The mediation phase of beta1/beta2 PC was also abolished by ZM241385, an adenosine A2A antagonist. The free radical scavenger NAC caused a significant attenuation of cardioprotection induced by isoproterenol when administered during both trigger and mediation phases, while being effective during the trigger phase with denopamine and during reperfusion in formoterol preconditioned hearts. The mitochondrial KATP channel blocker, 5-HD, was without effect on beta1/beta2 PC during both triggering and mediation phases. BPC in rat hearts is dependent on activation of the A3 adenosine receptors by endogenously produced adenosine and production of free radicals during the triggering and mediation phases while the A2A and A2B adenosine receptors participate mainly during reperfusion. The mitochondrial KATP channels do not contribute to cardioprotection at any stage. Activation of ERK and PI3K/PKB/Akt during the triggering and reperfusion phases is associated with cardioprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AR:

Adrenergic receptor

AC:

Adenylyl cyclase

AdoR:

Adenosine receptor

ROS:

Reactive oxygen species

MPTP:

Mitochondrial permeability transition pore

References

  1. Asimakis GK, Conti VR (1995) Preconditioning with dobutamine in the isolated rat heart. Life Sci 57:177–187. doi:10.1016/0024-3205(95)00258-8

    Article  PubMed  CAS  Google Scholar 

  2. Asimakis GK, Inners-McBride K, Conti VR, Yang CJ (1994) Transient beta adrenergic stimulation can precondition the rat heart against post-ischemic contractile dysfunction. Cardiovasc Res 28:1726–1734. doi:10.1016/0024-3205(95)00258-8

    Article  PubMed  CAS  Google Scholar 

  3. Auchampach JA, Ge ZD, Wan TC, Moore J, Gross GJ (2003) A3 adenosine receptor agonist IB-MECA reduces myocardial ischemia-reperfusion injury in dogs. Am J Physiol Heart Circ Physiol 285:H607–H613. doi:10.1152/ajpheart.01001.2002

    PubMed  CAS  Google Scholar 

  4. Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47:807–813. doi:10.1161/01.RES.47.6.807

    Article  PubMed  CAS  Google Scholar 

  5. Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103:203–215. doi:10.1007/s00395-007-0687-7

    Article  PubMed  CAS  Google Scholar 

  6. Cohen MV, Yang X-M, Downey JM (1999) Smaller infarct does not predict extent of early functional improvement of reperfused heart. Am J Physiol 277:H1754–H1761

    PubMed  CAS  Google Scholar 

  7. Cohen MV, Yang X-M, Liu GS, Heusch G, Downey JM (2001) Acetylcholine, bradykinin, opioids and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K (ATP) channels. Circ Res 89:273–278. doi:10.1161/hh1501.094266

    Article  PubMed  CAS  Google Scholar 

  8. Costa VM, Carvalho F, Bastos ML, Carvalho M, Remiao F (2011) Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart disease. Curr Med Chem 18:2272–2314

    PubMed  CAS  Google Scholar 

  9. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:839–944

    Article  Google Scholar 

  10. Cronstein BN (1994) Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 76:5–13

    PubMed  CAS  Google Scholar 

  11. Davidson SM, Hausenloy D, Duchen MR, Yellon DM (2006) Signaling via the reperfusion injury kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. Int J Biochem Cell Biol 38:414–419. doi:10.1061/j.biocel.2005.09.017

    Article  PubMed  CAS  Google Scholar 

  12. de Jong JW, de Jonge R, Keijzer E, Bradamante S (2000) The role of adenosine in preconditioning. Pharmacol Ther 87:141–149. doi:10.1016/S0163-7258(00)00044-9

    Article  PubMed  Google Scholar 

  13. Deussen A, Schrader J (1991) Cardiac adenosine production is linked to myocardial pO2. J Mol Cell Cardiol 23:495–504. doi:10.1016/0022-2828(91)90173-J

    Article  PubMed  CAS  Google Scholar 

  14. Dhalla NS, Adameova A, Kaur M (2010) Role of catecholamine oxidation in sudden cardiac death. Fundam Clin Pharmacol 24:539–546. doi:10.1111/j.1472-8206.2010.00836.x

    Article  PubMed  CAS  Google Scholar 

  15. Di Lisa F, Kaludercic N, Carpi A, Menabo R, Giorgio M (2009) Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66Shc and monoamine oxidase. Basic Res Cardiol 104:131–139. doi:10.1007/s00395-009-0008-4

    Article  PubMed  Google Scholar 

  16. Dobson JG Jr, Fenton RA, Romano FD (1987) The anti-adrenergic actions of adenosine on the heart. In: Gerlach E, Becker BF (eds) Topics and perspectives in Adenosine research. Springer-Verlag, New York, pp 356–368 doi: 10.1007/978-3-642-45619_0-29

  17. Dost T, Cohen MV, Downey JM (2008) Redox signalling triggers protection during reperfusion rather than the ischemic phase. Basic Res Cardiol 103:378–384. doi:10.1007/s00395-008-0718-z

    Article  PubMed  Google Scholar 

  18. Downey JM, Davis AM, Cohen MV (2007) Signaling pathways in ischemic preconditioning. Heart Fail Rev 12:181–188. doi:10.1007/s10741-007-9025-2

    Article  PubMed  CAS  Google Scholar 

  19. Downey JM, Krieg T, Cohen MV (2008) Mapping preconditioning’s signaling pathways: an engineering approach. Ann NY Acad Sci 1123:187–196. doi:10.1196/annals.1420.022

    Article  PubMed  CAS  Google Scholar 

  20. Eckle T, Krahn T, Grenz A, Köhler D, Mittelbron M, Jacobson MA, Osswald H, Thompson LF, Unerti K, Eltzschig HK (2007) Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115:1581–1590. doi:10.1161/CURCULATIONAHA.106.669697

    Article  PubMed  CAS  Google Scholar 

  21. Fan WJ, van Vuuren D, Genade S, Lochner A (2010) Kinases and phosphatases in ischaemic preconditioning: a re-evaluation. Basic Res Cardiol 105:495–511. doi:10.1007/s00395-010-0086-3

    Article  PubMed  CAS  Google Scholar 

  22. Fenton RA, Tsimikas S, Dobson JG Jr (1990) Influence of β-adrenergic stimulation and contraction frequency on rat heart interstitial adenosine. Circ Res 66:457–468

    Article  PubMed  CAS  Google Scholar 

  23. Frances C, Nazeyrollas P, Prevost A, Moreau F, Pisani J, Davani S et al (2003) Role of beta-1 and beta-2 adrenergic adrenoceptor subtypes in preconditioning against myocardial dysfunction after ischemia and reperfusion. J Cardiovasc Pharmacol 41:396–405. doi:10.1097/00005344-200303000-00008

    Article  PubMed  CAS  Google Scholar 

  24. Gross ER, Gross GJ (2006) Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res 70:212–221. doi:10.1016/j.cardiores.2005.12.019

    Article  PubMed  CAS  Google Scholar 

  25. Grube K, Rüdebusch J, Zhelong X, Böckenholt T et al (2011) Evidence for an intracellular localization of the adenosine A2B receptor in rat cardiomyocytes. Basic Res Cardiol 106:385–396. doi:10.1007/s00395-011-0151-6

    Article  PubMed  CAS  Google Scholar 

  26. Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM et al (2010) Translating novel strategies for cardioprotection: the Hatter workshop recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4

    Article  PubMed  Google Scholar 

  27. Hausenloy DJ, Ong S-B, Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104:189–202. doi:10.1007/s00395-009-0010-x

    Article  PubMed  CAS  Google Scholar 

  28. Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75. doi:10.1016/j.tcm.2005.03.001

    Article  PubMed  CAS  Google Scholar 

  29. Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102:445–452. doi:10.1007/s00395-007-0656-1

    Article  PubMed  CAS  Google Scholar 

  30. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia/reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61:448–460. doi:10.1016/j.cardiores.2003.09.024

    Article  PubMed  CAS  Google Scholar 

  31. Headrick JP, Peart J (2005) A3 adenosine receptor-mediated protection of the ischemic heart. Vasc Pharmacol 42:271–279. doi:10.1016/j.vph.2005.02.009

    Article  CAS  Google Scholar 

  32. Heusch G (2010) Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol 105:1–5. doi:10.1007/s00395-009-0074-7

    Article  PubMed  Google Scholar 

  33. Heusch G (2009) No RISK, no …cardioprotection? A critical perspective. Cardiovasc Res 84:173–175. doi:10.1093/cvr/cvp298

    Article  PubMed  CAS  Google Scholar 

  34. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  35. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol 105:151–154. doi:10.1007/s00395-009-0080-9

    Article  PubMed  Google Scholar 

  36. Jenkins DP, Bugsley WB, Yellon DM (1995) Ischaemic preconditioning in a model of global ischaemia: infarct size limitation, but no reduction in stunning. J Mol Cell Cardiol 27:1623–1632. doi:10.1016/S0022-2828(95)90590-1

    Article  PubMed  CAS  Google Scholar 

  37. Jacobson K (1998) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharm Sci 19:184–194. doi:10.1016/S0165-6147(98)01203-6

    Article  PubMed  CAS  Google Scholar 

  38. Jiang JL, van Rhee AM, Melman N, Ji XD, Jacobson KA (1996) 6-Phenyl-14-dihydropyridine derivatives as potent and selective A3 adenosine receptor antagonists. J Med Chem 39:4667–4675. doi:10.1021/jm960457c

    Article  PubMed  CAS  Google Scholar 

  39. Kim Y-C, Ji XD, Melman N, Linden J, Jacobson KA (2000) Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A(2B) adenosine receptors. J Med Chem 43:1165–1172. doi:10.1021/jm990421v

    Article  PubMed  CAS  Google Scholar 

  40. Kuno A, Critz SD, Cui L, Solodushko V, Yang XM, Krahn T et al (2007) Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. J Mol Cell Cardiol 43:262–271. doi:10.1016/j.yjmcc.2007.05.016

    Article  PubMed  CAS  Google Scholar 

  41. Lankford AR, Yang JN, Rose’Meyer R, French BA, Matherne GP, Fredholm BB, Yang Z (2006) Effect of modulating cardiac A1 adenosine receptor expression on protection with ischemic preconditioning. Am J Physiol Heart Circ Physiol 290:H1469–H1473. doi:10.1152/ajpheart.00181.2005

    Article  PubMed  CAS  Google Scholar 

  42. Li J, yan B, Liu Y, Xu J, Sun Y, Liang D, Peng L, Zhang Y, Zhou ZN, Shi J, Cui J, Chen YH (2010) Beta-2 but not beta-1 adrenoceptor activation modulates intracellular oxygen availability. J Physiol 588:2987–2998. doi:10.1113/jphysiol.2010.190900

    Article  PubMed  CAS  Google Scholar 

  43. Li YO, Fredholm BB (1985) Adenosine analogues stimulate cyclic AMP formation in rat cerebral microvessels via adenosine A2 receptors. Acta Physiol Scand 24:253–259. doi:10.1111/j.1748-1716.1985.tb07659.x

    Article  Google Scholar 

  44. Liem DA, Van den Doel MA, de Zeeuw S, Verdouw PD, Duncker DJ (2001) The role of adenosine in ischemic preconditioning in rats depends critically on the duration of the stimulus and involves both A1 and A3 receptors. Cardiovasc Res 51:701–708. doi:10.1016/S0008-6363(01)00321-2

    Article  PubMed  CAS  Google Scholar 

  45. Lochner A, Genade S, Tromp E, Podzuweit T, Moolman JA (1999) Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation 100:958–966

    Article  PubMed  CAS  Google Scholar 

  46. Lochner A, Genade S, Moolman JA (2003) Ischemic preconditioning: infarct size is a more reliable endpoint than functional recovery. Basic Res Cardiol 98:337–346. doi:10.1007/S00395-003-0427-6

    Article  PubMed  CAS  Google Scholar 

  47. Liu Y, Yang X, Yang XM, Förster K, Cohen MV, Krieg T, Downey JM (2010) AMP579 is revealed to be a potent A2b-adenosine receptor agonist in human 293 cells and rabbit hearts. Basic Res Cardiol 105:129–137. doi:10.1007/s00395-009-0056-9

    Article  PubMed  CAS  Google Scholar 

  48. Maddock HL, Broadley KJ, Bril A, Khandoudi N (2001) Role of endothelium in ischaemia-induced myocardial dysfunction of isolated working hearts: cardioprotection by activation of adenosine A(2A) receptors. J Auton Pharmacol 21:263–271. doi:10.1046/j.1365-2680.2001.00238.x

    Article  PubMed  CAS  Google Scholar 

  49. Maddock MM, Mocanu MM, Yellon DM (2002) Adenosine A3 receptor activation protects the myocardium from reperfusion/reoxygenation injury. Am J Physiol 283:H1307–H1313. doi:10.1152/ajpheart.00851.2001

    CAS  Google Scholar 

  50. McIntosh VJ, Lasley RD (2012) Adenosine receptor-mediated cardioprotection; are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 17:21–33. doi:10.1177/1074248410396877

    Article  PubMed  CAS  Google Scholar 

  51. Miyawaki H, Ashraf M (1997) Isoproterenol mimics calcium preconditioning-induced protection against ischemia. Am J Physiol 272:H927–H936

    PubMed  CAS  Google Scholar 

  52. Moniri NH, Daaka Y (2007) Agonist-stimulated reactive oxygen species formation regulates beta2-adrenergic receptor signal transduction. Biochem Pharmacol 74:64–73. doi:10.1016/j.bcp.2007.03.016

    Article  PubMed  CAS  Google Scholar 

  53. Morrison RR, Teng B, Oldenburg PJ, Katwa LC, Schnermann JB, Mustafa SJ (2006) Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes. Am J Physiol Heart Circ Physiol 291:H1875–H1882. doi:10.1152/ajpheart.00158.2005

    Article  PubMed  CAS  Google Scholar 

  54. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. doi:10.1161/01.CIR.74.5.1124

    Article  PubMed  CAS  Google Scholar 

  55. Musiolik J, van Caster P, Skyschally A et al (2009) Reduction of infarct size by gentle reperfusion without activation of reperfusion injury salvage kinases in pigs. Cardiovasc Res 84:73–75. doi:10.1093/cvr/cvp271

    Google Scholar 

  56. Norton ED, Jackson EK, Turner MB et al (1992) The effect of intravenous infusions of selective adenosine A1-receptor and A2-receptor agonists on myocardial reperfusion injury. Am Heart J 123:332–338. doi:10.1016/0002-8703(92)90643-A

    Article  PubMed  CAS  Google Scholar 

  57. Pain T, Yang XM, Critz SD et al (2000) Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466. doi:10.1161/01.RES.87.6.460

    Article  PubMed  CAS  Google Scholar 

  58. Palmer TM, Poucher SM, Jacobson KA, Stiles GL (1995) 125I–4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5] triazin-5-yl-amino]ethyl)phenol, a high affinity antagonist radioligand selective for the A2a adenosine receptor. Mol Pharmacol 48:970–974

    PubMed  CAS  Google Scholar 

  59. Peart JN, Headrick JP (2007) Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther 114:208–221. doi:10.1016/j.pharmthera.2007.02.004

    Article  PubMed  CAS  Google Scholar 

  60. Peart JN, Flood A, Linden J, Matherne GP, Headrick JP (2002) Adenosine mediated cardioprotection in ischemia-reperfused mouse heart. J Cardiovasc Pharmacol 39:117–129. doi:10.1097/00005344-200201000-00013

    Article  PubMed  CAS  Google Scholar 

  61. Penna C, Mancardi D, Rastaldo R, Pagliaro P (2009) Cardioprotection: a radical view: free radicals in pre and postconditioning. Biochem Biophys Acta 1787:781–793. doi:10.1016/j.bbabio.2009.02.008

    Article  PubMed  CAS  Google Scholar 

  62. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Losano S, Gattullo D, Pagliaro P (2006) Postconditioning induced cardioprotection requires signalling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189. doi:10.1007/s00395-006-0584-5

    Article  PubMed  CAS  Google Scholar 

  63. Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV (2006) Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res 70:308–314. doi:10.1016/j.cardiores.2006.02.014

    Article  PubMed  CAS  Google Scholar 

  64. Reichelt ME, Willems L, Molina JG, Sun CX, Noble JC, Ashton KJ, Schnermann J, Blackburn MR, Headrick JP (2005) Genetic deletion of the A1 adenosine receptor limits myocardial ischemic tolerance. Circ Res 96:363–367. doi:10.1161/01.RES.0000156075.00127.C3

    Article  PubMed  CAS  Google Scholar 

  65. Robinet A, Hoizey G, Millart H (2005) PI 3-kinase, protein kinase C, and protein kinase A are involved in the trigger phase of beta1-adrenergic preconditioning. Cardiovasc Res 66:530–542. doi:10.1016/j.cardiores.2005.02.010

    Article  PubMed  CAS  Google Scholar 

  66. Salie R, Moolman JA, Lochner A (2011) The role of the beta-adrenergic receptor in the cardioprotective effects of beta-preconditioning. Cardiovasc Drugs Ther 25:31–46. doi:10.1007/s10557-010-6275-3

    Article  PubMed  CAS  Google Scholar 

  67. Schulte G, Sommerschild H, Yang J, Tokuno S, Goiny M, Lövdahl C, Johansson B, Fredholm BB, Valen G (2004) Adenosine A receptors are necessary for protection of the murine heart by remote, delayed adaptation to ischaemia. Acta Physiol Scand 182:133–143. doi:10.1111/j.1365-201X.2004.01350.x

    Article  PubMed  CAS  Google Scholar 

  68. Schulz R, Rose J, Post H, Heusch G (1995) Involvement of endogenous adenosine in ischaemic preconditioning in swine. Pflügers Arch 430:273–280. doi:10.1007/BF00374659

    Article  PubMed  CAS  Google Scholar 

  69. Skyschally A, van Caster P, Boengler K et al (2008) Ischemic postconditioning in pigs: No causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  Google Scholar 

  70. Solenkova NV, Solodushko V, Cohen MV, Downey JM (2006) Endogenous adenosine protects preconditioned heart during early minutes of reperfusion by activating Akt. Am J Physiol Heart Circ Physiol 290:H441–H449. doi:10.1152/ajpheart.00589.2005

    Article  PubMed  CAS  Google Scholar 

  71. Steinberg SF (2004) beta(2)-Adrenergic receptor signalling complexes in cardiomyocyte caveolae/lipid rafts. J Mol Cell Cardiol 37:407–415. doi:10.1016/j.yimcc.2004.04.018

    Article  PubMed  CAS  Google Scholar 

  72. Stenslokken KO, Rutkovskiy A, Kaljusto MJ, Hafstad AD, Larsen TS, Vaage J (2009) Inadvertent phosphorylation of survival kinases in isolated perfused hearts: a word of caution. Basic Res Cardiol 104:412–423. doi:10.1007/s00395-009-0780-1

    Article  PubMed  CAS  Google Scholar 

  73. Tong H, Bernstein D, Murphy E, Steenbergen C (2005) The role of beta-adrenergic receptor signaling in cardioprotection. FASEB J 19:983–985. doi:10.1096/fj.04-3067fje

    PubMed  CAS  Google Scholar 

  74. Tracey WR, Magee W, Masamune H, Oleynek JJ, hill RJ (1998) Selective activation of adenosine A3 receptors with N6-(3-chlorobenzyl)-5’-N-methylcarboxamidoadenosine (CB-MECA) provides via KATP channel activation. Cardiovasc Res 40:138–145. doi:10.1016/S0008-6363(98)00112-6

    Article  PubMed  CAS  Google Scholar 

  75. Vinten-Johansen J, Thourani VH, Ronson RS, Jordan JE, Zhao ZQ, Nakamura M, Velez D, Guyton RA (1999) Broad-spectrum cardioprotection with adenosine. Ann Thorac Surg 68:1942–1948. doi:10.1016/S0003-4975(99)01018-8

    Article  PubMed  CAS  Google Scholar 

  76. Xi J, McIntosh R, Shen X et al (2009) Adenosine A2A and A2B receptors work in concert to induce a strong protection against reperfusion injury in rat hearts. J Mol Cell Cardiol 47:684–690. doi:10.1016/j.yjmcc.2009.08.009

    Article  PubMed  CAS  Google Scholar 

  77. Yang X, Cohen MV, Downey JM (2010) Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther 24:225–234. doi:10.1007/s10557-010-6236-x

    Article  PubMed  Google Scholar 

  78. Yue Y, Qin Q, Cohen MV, Downey JM, Critz SD (2002) The relative order of mK(ATP) channels, free radicals and p38 MAPK in preconditioning’s protective pathway in rat heart. Cardiovasc Res 55:681–689. doi:10.1016/S0008-6363(02)00452-2

    Article  PubMed  CAS  Google Scholar 

  79. Ytrehus K, Liu Y, Downey JM (1994) Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol 266:H1145–H1152

    PubMed  CAS  Google Scholar 

  80. Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L, Nagai Y, Fujisawa Y, Miyatake A, Abe Y (2005) Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res 65:230–238. doi:10.1016/j.cardiores.2004.08.013

    Article  PubMed  CAS  Google Scholar 

  81. Zhang W, Yano N, Deng M, Mao Q, Shaw SK, Tseng Y-T (2011) Beta-adrenergic receptor-PI3 K signalling crosstalk in mouse heart: elucidation of immediate downstream signalling. PLoS One 6:e26581. doi:10.1371/journal.pone.0026581

    Article  PubMed  CAS  Google Scholar 

  82. Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci 89:7432–7436 http://dx.doi.org/10.1073/pnas.89.16.7432

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Lochner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salie, R., Moolman, J.A. & Lochner, A. The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation. Basic Res Cardiol 107, 281 (2012). https://doi.org/10.1007/s00395-012-0281-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0281-5

Keywords

Navigation