Skip to main content

Advertisement

Log in

Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Recently, exercise has been recommended as a part of lifestyle modification for all hypertensive patients; however, the precise mechanisms of its effects on hypertension are largely unknown. Therefore, this study aimed to investigate the mechanisms within the brain that can influence exercise-induced effects in an animal model of human essential hypertension. Young normotensive WKY rats and SHR were given moderate-intensity exercise for 16 weeks. Blood pressure was measured bi-weekly by tail-cuff method. Animals were then euthanized; paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM), important cardiovascular regulatory centers in the brain, were collected and analyzed by real-time RT-PCR, Western blot, EIA, and fluorescent microscopy. Exercise of 16-week duration attenuated systolic, diastolic, and mean arterial pressure in SHR. Sedentary SHR exhibited increased pro-inflammatory cytokines (PICs) and decreased anti-inflammatory IL-10 levels in the PVN and RVLM. Furthermore, SHRsed rats exhibited elevated levels of ACE, AT1R, and decreased levels of ACE2 and receptor Mas in the PVN and RVLM. Chronic exercise not only prevented the increase in PICs (TNF-α, IL-1β), ACE, and AT1R protein expression in the brain of SHR, but also dramatically upregulated IL-10, ACE2, and Mas receptor expression in SHR. In addition, these changes were associated with reduced plasma AngII levels, reduced neuronal activity, reduced NADPH-oxidase subunit gp91phox and inducible NO synthase in trained SHRs indicating reduced oxidative stress. These results suggest that chronic exercise not only attenuates PICs and the vasoconstrictor axis of the RAS but also improves the anti-inflammatory defense mechanisms and vasoprotective axis of the RAS in the brain, which, at least in part, explains the blood pressure-lowering effects of exercise in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abramson JL, Vaccarino V (2002) Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med 162:1286–1292. doi:ioi10476

    Article  PubMed  Google Scholar 

  2. Adams V, Linke A, Krankel N, Erbs S, Gielen S, Mobius-Winkler S, Gummert JF, Mohr FW, Schuler G, Hambrecht R (2005) Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation 111:555–562. doi:10.1161/01.CIR.0000154560.88933.7E

    Article  PubMed  CAS  Google Scholar 

  3. Agarwal D, Haque M, Sriramula S, Mariappan N, Pariaut R, Francis J (2009) Role of proinflammatory cytokines and redox homeostasis in exercise-induced delayed progression of hypertension in spontaneously hypertensive rats. Hypertension 54:1393–1400. doi:10.1161/HYPERTENSIONAHA.109.135459

    Article  PubMed  CAS  Google Scholar 

  4. Bai Y, Jabbari B, Ye S, Campese VM, Vaziri ND (2009) Regional expression of NAD(P)H oxidase and superoxide dismutase in the brain of rats with neurogenic hypertension. Am J Nephrol 29:483–492. doi:10.1159/000178817

    Article  PubMed  CAS  Google Scholar 

  5. Block CH, Santos RA, Brosnihan KB, Ferrario CM (1988) Immunocytochemical localization of angiotensin-(1–7) in the rat forebrain. Peptides 9:1395–1401. doi:10.1016/0196-9781(88)90208-2

    Article  PubMed  CAS  Google Scholar 

  6. Boissiere J, Eder V, Machet MC, Courteix D, Bonnet P (2008) Moderate exercise training does not worsen left ventricle remodeling and function in untreated severe hypertensive rats. J Appl Physiol 104:321–327. doi:10.1152/japplphysiol.00442.2007

    Article  PubMed  Google Scholar 

  7. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ (2003) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289:2560–2572. doi:10.1001/jama.289.19.2560

    Article  PubMed  CAS  Google Scholar 

  8. Ciampone S, Borges R, de Lima IP, Mesquita FF, Cambiucci EC, Gontijo JA (2011) Long-term exercise attenuates blood pressure responsiveness and modulates kidney angiotensin II signalling and urinary sodium excretion in SHR. J Renin Angiotensin Aldosterone Syst doi:10.1177/1470320311408750

  9. Danilczyk U, Penninger JM (2006) Angiotensin-converting enzyme II in the heart and the kidney. Circ Res 98:463–471. doi:10.1161/01.RES.0000205761.22353.5f

    Article  PubMed  CAS  Google Scholar 

  10. Das UN (2004) Anti-inflammatory nature of exercise. Nutrition 20:323–326. doi:10.1016/j.nut.2003.11.017

    Article  PubMed  Google Scholar 

  11. Das UN (1994) Beneficial effect of eicosapentaenoic and docosahexaenoic acids in the management of systemic lupus erythematosus and its relationship to the cytokine network. Prostaglandins Leukot Essent Fatty Acids 51:207–213. doi:10.1016/0952-3278(94)90136-8

    Article  PubMed  CAS  Google Scholar 

  12. Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E (2006) Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 48:787–796. doi:10.1161/01.HYP.0000242642.42177.49

    Article  PubMed  CAS  Google Scholar 

  13. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289:1799–1804. doi:10.1001/jama.289.14.1799

    Article  PubMed  CAS  Google Scholar 

  14. Filho AG, Ferreira AJ, Santos SH, Neves SR, Silva Camargos ER, Becker LK, Belchior HA, Dias-Peixoto MF, Pinheiro SV, Santos RA (2008) Selective increase of angiotensin(1–7) and its receptor in hearts of spontaneously hypertensive rats subjected to physical training. Exp Physiol 93:589–598. doi:10.1113/expphysiol.2007.014293

    PubMed  Google Scholar 

  15. Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, Zucker IH (2005) Simvastatin therapy normalizes sympathetic neural control in experimental heart failure: roles of angiotensin II type 1 receptors and NAD(P)H oxidase. Circulation 112:1763–1770. doi:10.1161/CIRCULATIONAHA.105.552174

    Article  PubMed  CAS  Google Scholar 

  16. Gao L, Wang W, Liu D, Zucker IH (2007) Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 115:3095–3102. doi:10.1161/CIRCULATIONAHA.106.677989

    Article  PubMed  Google Scholar 

  17. Garlie JB, Hamid T, Gu Y, Ismahil MA, Chandrasekar B, Prabhu SD (2011) Tumor necrosis factor receptor 2 signaling limits beta-adrenergic receptor-mediated cardiac hypertrophy in vivo. Basic Res Cardiol doi:10.1007/s00395-011-0196-6

  18. Geffken DF, Cushman M, Burke GL, Polak JF, Sakkinen PA, Tracy RP (2001) Association between physical activity and markers of inflammation in a healthy elderly population. Am J Epidemiol 153:242–250. doi:10.1093/aje/153.3.242

    Article  PubMed  CAS  Google Scholar 

  19. Giannopoulou I, Fernhall B, Carhart R, Weinstock RS, Baynard T, Figueroa A, Kanaley JA (2005) Effects of diet and/or exercise on the adipocytokine and inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metabolism 54:866–875. doi:10.1016/j.metabol.2005.01.033

    Article  PubMed  CAS  Google Scholar 

  20. Graham DA, Rush JW (2004) Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. J Appl Physiol 96:2088–2096. doi:10.1152/japplphysiol.01252.2003

    Article  PubMed  CAS  Google Scholar 

  21. Guggilam A, Cardinale JP, Mariappan N, Sriramula S, Haque M, Francis J (2011) Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide. Basic Res Cardiol 106:273–286. doi:10.1007/s00395-010-0146-8

    Article  PubMed  CAS  Google Scholar 

  22. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346. doi:10.1038/nrn1902

    Article  PubMed  CAS  Google Scholar 

  23. Heusch G, Schulz R (2011) A radical view on the contractile machinery in human heart failure. J Am Coll Cardiol 57:310–312. doi:10.1016/j.jacc.2010.06.057

    Article  PubMed  CAS  Google Scholar 

  24. Horn EM, Shonis CA, Holzwarth MA, Waldrop TG (1998) Decrease in glutamic acid decarboxylase level in the hypothalamus of spontaneously hypertensive rats. J Hypertens 16:625–633. doi:10.1097/00004872-199816050-00010

    Article  PubMed  CAS  Google Scholar 

  25. Jennings JR, Zanstra Y (2009) Is the brain the essential in hypertension? Neuroimage 47:914–921. doi:10.1016/j.neuroimage.2009.04.072

    Article  PubMed  Google Scholar 

  26. Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, Yan N, Guo Z, Francis J (2009) Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 83:737–746. doi:10.1093/cvr/cvp160

    Article  PubMed  CAS  Google Scholar 

  27. Kang YM, Wang Y, Yang LM, Elks C, Cardinale J, Yu XJ, Zhao XF, Zhang J, Zhang LH, Yang ZM, Francis J (2010) TNF-alpha in hypothalamic paraventricular nucleus contributes to sympathoexcitation in heart failure by modulating AT1 receptor and neurotransmitters. Tohoku J Exp Med 222:251–263. doi:JST.JSTAGE/tjem/222.251

    Article  PubMed  CAS  Google Scholar 

  28. Kang YM, Zhang AQ, Zhao XF, Cardinale JP, Elks C, Cao XM, Zhang ZW, Francis J (2011) Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Res Cardiol 106:473–483. doi:10.1007/s00395-011-0155-2

    Article  PubMed  CAS  Google Scholar 

  29. Kar S, Gao L, Zucker IH (2010) Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing-induced heart failure. J Appl Physiol 108:923–932. doi:10.1152/japplphysiol.00840.2009

    Article  PubMed  CAS  Google Scholar 

  30. Kemi OJ, Haram PM, Loennechen JP, Osnes JB, Skomedal T, Wisloff U, Ellingsen O (2005) Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res 67:161–172. doi:10.1016/j.cardiores.2005.03.010

    Article  PubMed  CAS  Google Scholar 

  31. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  PubMed  CAS  Google Scholar 

  32. Kohlstedt K, Trouvain C, Namgaladze D, Fleming I (2011) Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype. Basic Res Cardiol 106:205–215. doi:10.1007/s00395-010-0137-9

    Article  PubMed  CAS  Google Scholar 

  33. Kramer JM, Plowey ED, Beatty JA, Little HR, Waldrop TG (2000) Hypothalamus, hypertension, and exercise. Brain Res Bull 53:77–85. doi:10.1016/S0361-9230(00)00311-7

    Article  PubMed  CAS  Google Scholar 

  34. Li QX, Xiong ZY, Hu BP, Tian ZJ, Zhang HF, Gou WY, Wang HC, Gao F, Zhang QJ (2009) Aging-associated insulin resistance predisposes to hypertension and its reversal by exercise: the role of vascular vasorelaxation to insulin. Basic Res Cardiol 104:269–284. doi:10.1007/s00395-008-0754-8

    Article  PubMed  CAS  Google Scholar 

  35. Liu JL, Kulakofsky J, Zucker IH (2002) Exercise training enhances baroreflex control of heart rate by a vagal mechanism in rabbits with heart failure. J Appl Physiol 92:2403–2408. doi:10.1152/japplphysiol.00039.2002

    PubMed  Google Scholar 

  36. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:e46–e215. doi:10.1161/CIRCULATIONAHA.109.192667

    Article  PubMed  Google Scholar 

  37. Lu Y, Chen J, Yin X, Zhao H (2009) Angiotensin II receptor 1 involved in the central pressor response induced by interleukin-1 beta in the paraventricular nucleus. Neurol Res 31:420–424. doi:10.1179/174313208X353677

    Article  PubMed  CAS  Google Scholar 

  38. Marfella R, Esposito K, Siniscalchi M, Cacciapuoti F, Giugliano F, Labriola D, Ciotola M, Di Palo C, Misso L, Giugliano D (2004) Effect of weight loss on cardiac synchronization and proinflammatory cytokines in premenopausal obese women. Diabetes Care 27:47–52. doi:10.2337/diacare.27.1.47

    Article  PubMed  CAS  Google Scholar 

  39. Mattusch F, Dufaux B, Heine O, Mertens I, Rost R (2000) Reduction of the plasma concentration of C-reactive protein following 9 months of endurance training. Int J Sports Med 21:21–24. doi:10.1055/s-2000-8852

    Article  PubMed  CAS  Google Scholar 

  40. Mayorov DN, Head GA, De Matteo R (2004) Tempol attenuates excitatory actions of angiotensin II in the rostral ventrolateral medulla during emotional stress. Hypertension 44:101–106. doi:10.1161/01.HYP.0000131290.12255.04

    Article  PubMed  CAS  Google Scholar 

  41. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97. doi:10.1152/ajpcell.00287.2006

    Article  PubMed  CAS  Google Scholar 

  42. Murdoch CE, Alom-Ruiz SP, Wang M, Zhang M, Walker S, Yu B, Brewer A, Shah AM (2011) Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol 106:527–538. doi:10.1007/s00395-011-0179-7

    Article  PubMed  CAS  Google Scholar 

  43. Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T (2009) Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation 119:978–986. doi:10.1161/CIRCULATIONAHA.108.824730

    Article  PubMed  CAS  Google Scholar 

  44. Nomoto T, Okada T, Shimazaki K, Yoshioka T, Nonaka-Sarukawa M, Ito T, Takeuchi K, Katsura KI, Mizukami H, Kume A, Ookawara S, Ikeda U, Katayama Y, Ozawa K (2009) Systemic delivery of IL-10 by an AAV vector prevents vascular remodeling and end-organ damage in stroke-prone spontaneously hypertensive rat. Gene Ther 16:383–391. doi:10.1038/gt.2008.151

    Article  PubMed  CAS  Google Scholar 

  45. Nonaka-Sarukawa M, Okada T, Ito T, Yamamoto K, Yoshioka T, Nomoto T, Hojo Y, Shimpo M, Urabe M, Mizukami H, Kume A, Ikeda U, Shimada K, Ozawa K (2008) Adeno-associated virus vector-mediated systemic interleukin-10 expression ameliorates hypertensive organ damage in Dahl salt-sensitive rats. J Gene Med 10:368–374. doi:10.1002/jgm.1166

    Article  PubMed  Google Scholar 

  46. Nunes RB, Tonetto M, Machado N, Chazan M, Heck TG, Veiga AB, Dall’Ago P (2008) Physical exercise improves plasmatic levels of IL-10, left ventricular end-diastolic pressure, and muscle lipid peroxidation in chronic heart failure rats. J Appl Physiol 104:1641–1647. doi:10.1152/japplphysiol.00062.2008

    Article  PubMed  CAS  Google Scholar 

  47. Ogihara CA, Schoorlemmer GH, Levada AC, Pithon-Curi TC, Curi R, Lopes OU, Colombari E, Sato MA (2010) Exercise changes regional vascular control by commissural NTS in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 299:R291–R297. doi:10.1152/ajpregu.00055.2009

    Article  PubMed  CAS  Google Scholar 

  48. Peeters AC, Netea MG, Janssen MC, Kullberg BJ, Van der Meer JW, Thien T (2001) Pro-inflammatory cytokines in patients with essential hypertension. Eur J Clin Invest 31:31–36. doi:10.1046/j.1365-2362.2001.00743.x

    Article  PubMed  CAS  Google Scholar 

  49. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162. doi:10.1152/japplphysiol.00164.2004

    Article  PubMed  CAS  Google Scholar 

  50. Phillips MI, de Oliveira EM (2008) Brain renin angiotensin in disease. J Mol Med 86:715–722. doi:10.1007/s00109-008-0331-5

    Article  PubMed  CAS  Google Scholar 

  51. Rush JW, Turk JR, Laughlin MH (2003) Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. Am J Physiol Heart Circ Physiol 284:H1378–H1387. doi:10.1152/ajpheart.00190.2002

    PubMed  CAS  Google Scholar 

  52. Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119:1355–1357. doi:10.1161/CIRCULATIONAHA.108.846105

    Article  PubMed  Google Scholar 

  53. Shi P, Raizada MK, Sumners C (2010) Brain cytokines as neuromodulators in cardiovascular control. Clin Exp Pharmacol Physiol 37:e52–e57. doi:10.1111/j.1440-1681.2009.05234.x

    Article  PubMed  CAS  Google Scholar 

  54. Sirker A, Zhang M, Shah AM (2011) NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 106:735–747. doi:10.1007/s00395-011-0190-z

    Article  PubMed  CAS  Google Scholar 

  55. Smith JK, Dykes R, Douglas JE, Krishnaswamy G, Berk S (1999) Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA 281:1722–1727. doi:10.1001/jama.281.18.1722

    Article  PubMed  CAS  Google Scholar 

  56. Sriramula S, Cardinale JP, Lazartigues E, Francis J (2011) ACE2 overexpression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res 92:401–408. doi:10.1093/cvr/cvr242

    Article  PubMed  CAS  Google Scholar 

  57. Sriramula S, Haque M, Majid DS, Francis J (2008) Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51:1345–1351. doi:10.1161/HYPERTENSIONAHA.107.102152

    Article  PubMed  CAS  Google Scholar 

  58. Sun MW, Qian FL, Wang J, Tao T, Guo J, Wang L, Lu AY, Chen H (2008) Low-intensity voluntary running lowers blood pressure with simultaneous improvement in endothelium-dependent vasodilatation and insulin sensitivity in aged spontaneously hypertensive rats. Hypertens Res 31:543–552. doi:10.1291/hypres.31.543

    Article  PubMed  Google Scholar 

  59. Tiyerili V, Zimmer S, Jung S, Wassmann K, Naehle CP, Lutjohann D, Zimmer A, Nickenig G, Wassmann S (2010) CB1 receptor inhibition leads to decreased vascular AT1 receptor expression, inhibition of oxidative stress and improved endothelial function. Basic Res Cardiol 105:465–477. doi:10.1007/s00395-010-0090-7

    Article  PubMed  CAS  Google Scholar 

  60. Ufnal M, Zera T, Szczepanska-Sadowska E (2005) Blockade of angiotensin II AT1 receptors inhibits pressor action of centrally administered interleukin-1beta in Sprague Dawley rats. Neuropeptides 39:581–585. doi:10.1016/j.npep.2005.08.001

    Article  PubMed  CAS  Google Scholar 

  61. Van Craenenbroeck EM, Hoymans VY, Beckers PJ, Possemiers NM, Wuyts K, Paelinck BP, Vrints CJ, Conraads VM (2010) Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Basic Res Cardiol 105:665–676. doi:10.1007/s00395-010-0105-4

    Article  PubMed  Google Scholar 

  62. Xia H, Lazartigues E (2010) Angiotensin-converting enzyme 2: central regulator for cardiovascular function. Curr Hypertens Rep 12:170–175. doi:10.1007/s11906-010-0105-7

    Article  PubMed  CAS  Google Scholar 

  63. Zamo FS, Barauna VG, Chiavegatto S, Irigoyen MC, Oliveira EM (2011) The renin-angiotensin system is modulated by swimming training depending on the age of spontaneously hypertensive rats. Life Sci 89:93–99. doi:10.1016/j.lfs.2011.05.004

    Article  PubMed  CAS  Google Scholar 

  64. Zhang ZH, Wei SG, Francis J, Felder RB (2003) Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: the role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol 284:R916–R927. doi:10.1152/ajpregu.00406.2002

    PubMed  CAS  Google Scholar 

  65. Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, D’Andrea F, Molinari AM, Giugliano D (2002) Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over 1 year. Circulation 105:804–809. doi:10.1161/hc0702.104279

    Article  PubMed  CAS  Google Scholar 

  66. Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL (2004) Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res 95:210–216. doi:10.1161/01.RES.0000135483.12297.e4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Sherry Ring for sectioning the tissue samples. This work was supported by National Heart, Lung, and Blood Institute Grant HL-80544 to Joseph Francis.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Francis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, D., Welsch, M.A., Keller, J.N. et al. Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Res Cardiol 106, 1069–1085 (2011). https://doi.org/10.1007/s00395-011-0231-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0231-7

Keywords

Navigation