Skip to main content

Advertisement

Log in

Pioglitazone limits myocardial infarct size, activates Akt, and upregulates cPLA2 and COX-2 in a PPAR-γ-independent manner

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Pioglitazone (PIO), a PPAR-γ agonist, limits myocardial infarct size by activating Akt and upregulating cytosolic phospholipase A2 (cPLA2) and cyclooxygenase (COX)-2. However, PIO has several PPAR-γ-independent effects. We assessed whether PIO limits myocardial infarct size in PPAR-γ–knockout mice, attenuates hypoxia-reoxygenation injury and upregulates P-Akt, cPLA2, and COX-2 expression in PPAR-γ–knockout cardiomyocytes. Cardiac-specific inducible PPAR-γ knockout mice were generated by crossing αMHC-Cre mice to PPAR-γloxp/loxp mice. PPAR-γ deletion was achieved after 7 days of intraperitoneal tamoxifen (20 mg/kg/day) administration. Mice received PIO (10 mg/kg/day), or vehicle, for 3 days and underwent coronary occlusion (30 min) followed by reperfusion (4 h). We assessed the area at risk by blue dye and infarct size by TTC. Cultured adult cardiomyocytes of PPAR-γloxp/loxp/cre mice without or with pretreatment with tamoxifen were incubated with or without PIO and subjected to 2 h hypoxia/2 h reoxygenation. Cardiac-specific PPAR-γ knockout significantly increased infarct size. PIO reduced infarct size by 51% in PPAR-γ knockout mice and by 55% in mice with intact PPAR-γ. Deleting the PPAR-γ gene increased cell death in vitro. PIO reduced cell death in cells with and without intact PPAR-γ. PIO similarly increased myocardial Ser-473 P-Akt, cPLA2, and COX-2 levels after hypoxia/reoxygenation in cells with and without intact PPAR-γ. PIO limited infarct size in mice in a PPAR-γ-independent manner. PIO activated Akt, increased the expression of cPLA2 and COX-2, and protected adult cardiomyocytes against the effects of hypoxia/reoxygenation independent of PPAR-γ activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Artwohl M, Furnsinn C, Waldhausl W, Holzenbein T, Rainer G, Freudenthaler A, Roden M, Baumgartner-Parzer SM (2005) Thiazolidinediones inhibit proliferation of microvascular and macrovascular cells by a PPARgamma-independent mechanism. Diabetologia 48:586–594. doi:10.1007/s00125-005-1672-z

    Article  PubMed  CAS  Google Scholar 

  2. Atar S, Ye Y, Lin Y, Freeberg SY, Nishi SP, Rosanio S, Huang MH, Uretsky BF, Perez-Polo JR, Birnbaum Y (2006) Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2. Am J Physiol Heart Circ Physiol 290:H1960–H1968. doi:10.1152/ajpheart.01137.2005

    Article  PubMed  CAS  Google Scholar 

  3. Birnbaum Y, Lin Y, Ye Y, Martinez JD, Huang MH, Lui CY, Perez-Polo JR, Uretsky BF (2007) Aspirin before reperfusion blunts the infarct size limiting effect of atorvastatin. Am J Physiol Heart Circ Physiol 292:H2891–H2897. doi:10.1152/ajpheart.01269.2006

    Article  PubMed  CAS  Google Scholar 

  4. Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Nishi SP, Martinez JD, Huang MH, Uretsky BF, Perez-Polo JR (2006) Augmentation of myocardial production of 15-epi-lipoxin-a4 by pioglitazone and atorvastatin in the rat. Circulation 114:929–935. doi:10.1161/CIRCULATIONAHA.106.629907

    Article  PubMed  CAS  Google Scholar 

  5. Birnbaum Y, Ye Y, Rosanio S, Tavackoli S, Hu ZY, Schwarz ER, Uretsky BF (2005) Prostaglandins mediate the cardioprotective effects of atorvastatin against ischemia-reperfusion injury. Cardiovasc Res 65:345–355. doi:10.1016/j.cardiores.2004.10.018

    Article  PubMed  CAS  Google Scholar 

  6. Biscetti F, Straface G, Arena V, Stigliano E, Pecorini G, Rizzo P, De Angelis G, Iuliano L, Ghirlanda G, Flex A (2009) Pioglitazone enhances collateral blood flow in ischemic hindlimb of diabetic mice through an Akt-dependent VEGF-mediated mechanism, regardless of PPARgamma stimulation. Cardiovasc Diabetol 8:49. doi:10.1186/1475-2840-8-49

    Article  PubMed  Google Scholar 

  7. Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 292:H1764–H1769. doi:10.1152/ajpheart.01071.2006

    Article  PubMed  CAS  Google Scholar 

  8. Bolli R, Shinmura K, Tang XL, Kodani E, Xuan YT, Guo Y, Dawn B (2002) Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res 55:506–519. doi:10.1016/S0008-6363(02)00414-5

    Article  PubMed  CAS  Google Scholar 

  9. Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B (2008) Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol 295:H1580–H1586. doi:10.1152/ajpheart.00379.2008

    Article  PubMed  CAS  Google Scholar 

  10. Brunmair B, Gras F, Neschen S, Roden M, Wagner L, Waldhausl W, Furnsinn C (2001) Direct thiazolidinedione action on isolated rat skeletal muscle fuel handling is independent of peroxisome proliferator-activated receptor-gamma-mediated changes in gene expression. Diabetes 50:2309–2315. doi:10.2337/diabetes.50.10.2309

    Article  PubMed  CAS  Google Scholar 

  11. Bulhak AA, Jung C, Ostenson CG, Lundberg JO, Sjoquist PO, Pernow J (2009) PPAR-alpha activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: involvement of the PI3-Kinase/Akt and NO pathway. Am J Physiol Heart Circ Physiol 296:H719–H727. doi:10.1152/ajpheart.00394.2008

    Article  PubMed  CAS  Google Scholar 

  12. Derlacz RA, Hyc K, Usarek M, Jagielski AK, Drozak J, Jarzyna R (2008) PPAR-gamma-independent inhibitory effect of rosiglitazone on glucose synthesis in primary cultured rabbit kidney-cortex tubules. Biochem Cell Biol 86:396–404. doi:10.1139/o08-105

    Article  PubMed  CAS  Google Scholar 

  13. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefebvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Koranyi L, Laakso M, Mokan M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Taton J (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289. doi:10.1016/S0140-6736(05)67528-9

    Article  PubMed  CAS  Google Scholar 

  14. Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM (2005) Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice. Circ Res 97:372–379. doi:10.1161/01.RES.0000179226.34112.6d

    Article  PubMed  CAS  Google Scholar 

  15. Ebrahim Z, Yellon DM, Baxter GF (2007) Ischemic preconditioning is lost in aging hypertensive rat heart: independent effects of aging and longstanding hypertension. Exp Gerontol 42:807–814. doi:10.1016/j.exger.2007.04.005

    Article  PubMed  CAS  Google Scholar 

  16. Fan WJ, van Vuuren D, Genade S, Lochner A (2010) Kinases and phosphatases in ischaemic preconditioning: a re-evaluation. Basic Res Cardiol 105:495–511. doi:10.1007/s00395-010-0086-3

    Article  PubMed  CAS  Google Scholar 

  17. Galli A, Ceni E, Crabb DW, Mello T, Salzano R, Grappone C, Milani S, Surrenti E, Surrenti C, Casini A (2004) Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARgamma independent mechanisms. Gut 53:1688–1697. doi:10.1136/gut.2003.031997

    Article  PubMed  CAS  Google Scholar 

  18. Glatz T, Stock I, Nguyen-Ngoc M, Gohlke P, Herdegen T, Culman J, Zhao Y (2010) Peroxisome-proliferator-activated receptors gamma and peroxisome-proliferator-activated receptors beta/delta and the regulation of interleukin 1 receptor antagonist expression by pioglitazone in ischaemic brain. J Hypertens 28:1488–1497. doi:10.1097/HJH.0b013e3283396e4e

    Article  PubMed  CAS  Google Scholar 

  19. Gonon AT, Bulhak A, Labruto F, Sjoquist PO, Pernow J (2007) Cardioprotection mediated by rosiglitazone, a peroxisome proliferator-activated receptor gamma ligand, in relation to nitric oxide. Basic Res Cardiol 102:80–89. doi:10.1007/s00395-006-0613-4

    Article  PubMed  CAS  Google Scholar 

  20. Gres P, Schulz R, Jansen J, Umschlag C, Heusch G (2002) Involvement of endogenous prostaglandins in ischemic preconditioning in pigs. Cardiovasc Res 55:626–632

    Article  PubMed  CAS  Google Scholar 

  21. Han JK, Lee HS, Yang HM, Hur J, Jun SI, Kim JY, Cho CH, Koh GY, Peters JM, Park KW, Cho HJ, Lee HY, Kang HJ, Oh BH, Park YB, Kim HS (2008) Peroxisome proliferator-activated receptor-delta agonist enhances vasculogenesis by regulating endothelial progenitor cells through genomic and nongenomic activations of the phosphatidylinositol 3-kinase/Akt pathway. Circulation 118:1021–1033. doi:10.1161/CIRCULATIONAHA.108.777169

    Article  PubMed  CAS  Google Scholar 

  22. Hausenloy DJ (2009) Signalling pathways in ischaemic postconditioning. Thromb Haemost 101:626–634. doi:10.1160/TH08-11-0734

    PubMed  CAS  Google Scholar 

  23. Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4

    Article  PubMed  Google Scholar 

  24. Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75. doi:10.1016/j.tcm.2005.03.001

    Article  PubMed  CAS  Google Scholar 

  25. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253. doi:10.1016/j.cardiores.2006.01.017

    Article  PubMed  CAS  Google Scholar 

  26. Heusch G (2009) No risk, no… cardioprotection? A critical perspective. Cardiovasc Res 84:173–175. doi:10.1093/cvr/cvp298

    Article  PubMed  CAS  Google Scholar 

  27. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  28. Hinrichs S, Heger J, Schreckenberg R, Wenzel S, Euler G, Arens C, Bader M, Rosenkranz S, Caglayan E, Schluter KD (2011) Controlling cardiomyocyte length: the role of renin and PPAR-{gamma}. Cardiovasc Res 89:344–352. doi:10.1093/cvr/cvq313

    Article  PubMed  CAS  Google Scholar 

  29. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M, McMurray JJ (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135. doi:10.1016/S0140-6736(09)60953-3

    Article  PubMed  CAS  Google Scholar 

  30. Ihm SH, Chang K, Kim HY, Baek SH, Youn HJ, Seung KB, Kim JH (2010) Peroxisome proliferator-activated receptor-gamma activation attenuates cardiac fibrosis in type 2 diabetic rats: the effect of rosiglitazone on myocardial expression of receptor for advanced glycation end products and of connective tissue growth factor. Basic Res Cardiol 105:399–407. doi:10.1007/s00395-009-0071-x

    Article  PubMed  CAS  Google Scholar 

  31. Ito H, Nakano A, Kinoshita M, Matsumori A (2003) Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia/reperfusion injury in a rat model. Lab Invest 83:1715–1721. doi:10.1097/01.LAB.0000106724.29121.DA

    Article  PubMed  CAS  Google Scholar 

  32. Keyes KT, Xu J, Long B, Zhang C, Hu Z, Ye Y (2010) Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction. Am J Physiol Heart Circ Physiol 298:H1198–H1208. doi:10.1152/ajpheart.00915.2009

    Article  PubMed  CAS  Google Scholar 

  33. Kim SF, Huri DA, Snyder SH (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310:1966–1970. doi:10.1126/science.1119407

    Article  PubMed  CAS  Google Scholar 

  34. Lecour S (2009) Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47:32–40. doi:10.1016/j.yjmcc.2009.03.019

    Article  PubMed  CAS  Google Scholar 

  35. Lee CH, Olson P, Evans RM (2003) Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144:2201–2207. doi:10.1210/en.2003-0288

    Article  PubMed  CAS  Google Scholar 

  36. Lennon AM, Ramauge M, Dessouroux A, Pierre M (2002) MAP kinase cascades are activated in astrocytes and preadipocytes by 15-deoxy-Delta(12–14)-prostaglandin J(2) and the thiazolidinedione ciglitazone through peroxisome proliferator activator receptor gamma-independent mechanisms involving reactive oxygenated species. J Biol Chem 277:29681–29685. doi:10.1074/jbc.M201517200

    Article  PubMed  CAS  Google Scholar 

  37. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE (2007) Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298:1180–1188. doi:10.1001/jama.298.10.1180

    Article  PubMed  CAS  Google Scholar 

  38. Liu HB, Hu YS, Medcalf RL, Simpson RW, Dear AE (2005) Thiazolidinediones inhibit TNFalpha induction of PAI-1 independent of PPARgamma activation. Biochem Biophys Res Commun 334:30–37. doi:10.1016/j.bbrc.2005.06.055

    Article  PubMed  CAS  Google Scholar 

  39. Liu Y, Zhu Y, Rannou F, Lee TS, Formentin K, Zeng L, Yuan X, Wang N, Chien S, Forman BM, Shyy JY (2004) Laminar flow activates peroxisome proliferator-activated receptor-gamma in vascular endothelial cells. Circulation 110:1128–1133. doi:10.1161/01.CIR.0000139850.08365.EC

    Article  PubMed  CAS  Google Scholar 

  40. Mannucci E, Monami M, Lamanna C, Gensini GF, Marchionni N (2008) Pioglitazone and cardiovascular risk. A comprehensive meta-analysis of randomized clinical trials. Diabetes Obes Metab 10:1221–1238. doi:10.1111/j.1463-1326.2008.00892.x

    Article  PubMed  CAS  Google Scholar 

  41. Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino RB Sr, Perez A, Provost JC, Haffner SM (2006) Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 296:2572–2581. doi:10.1001/jama.296.21.joc60158

    Article  PubMed  CAS  Google Scholar 

  42. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471. doi:10.1056/NEJMoa072761

    Article  PubMed  CAS  Google Scholar 

  43. Nissen SE, Wolski K, Topol EJ (2005) Effect of Muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 294:2581–2586. doi:10.1001/jama.294.20.joc50147

    Article  PubMed  CAS  Google Scholar 

  44. Nomura H, Yamawaki H, Mukohda M, Okada M, Hara Y (2008) Mechanisms underlying pioglitazone-mediated relaxation in isolated blood vessel. J Pharmacol Sci 108:258–265. doi:10.1254/jphs.08117FP

    Article  PubMed  CAS  Google Scholar 

  45. Orasanu G, Ziouzenkova O, Devchand PR, Nehra V, Hamdy O, Horton ES, Plutzky J (2008) The peroxisome proliferator-activated receptor-gamma agonist pioglitazone represses inflammation in a peroxisome proliferator-activated receptor-alpha-dependent manner in vitro and in vivo in mice. J Am Coll Cardiol 52:869–881. doi:10.1016/j.jacc.2008.04.055

    Article  PubMed  CAS  Google Scholar 

  46. Oshio H, Abe T, Onogawa T, Ohtsuka H, Sato T, Ii T, Fukase K, Muto M, Katayose Y, Oikawa M, Rikiyama T, Egawa S, Unno M (2008) Peroxisome proliferator-activated receptor alpha activates cyclooxygenase-2 gene transcription through bile acid transport in human colorectal cancer cell lines. J Gastroenterol 43:538–549. doi:10.1007/s00535-008-2188-3

    Article  PubMed  CAS  Google Scholar 

  47. Patel CB, De Lemos JA, Wyne KL, McGuire DK (2006) Thiazolidinediones and risk for atherosclerosis: pleiotropic effects of PPar gamma agonism. Diab Vasc Dis Res 3:65–71. doi:10.3132/dvdr.2006.016

    Article  PubMed  Google Scholar 

  48. Penna C, Mancardi D, Tullio F, Pagliaro P (2008) Postconditioning and intermittent bradykinin induced cardioprotection require cyclooxygenase activation and prostacyclin release during reperfusion. Basic Res Cardiol 103:368–377. doi:10.1007/s00395-007-0695-7

    Article  PubMed  Google Scholar 

  49. Reyes-Martin P, Ramirez-Rubio S, Parra-Cid T, Bienes-Martinez R, Lucio-Cazana J (2008) 15-Deoxy-delta12, 14-prostaglandin-J(2) up-regulates cyclooxygenase-2 but inhibits prostaglandin-E(2) production through a thiol antioxidant-sensitive mechanism. Pharmacol Res 57:344–350. doi:10.1016/j.phrs.2008.03.007

    Article  PubMed  CAS  Google Scholar 

  50. Sakamoto J, Kimura H, Moriyama S, Odaka H, Momose Y, Sugiyama Y, Sawada H (2000) Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun 278:704–711. doi:10.1006/bbrc.2000.3868

    Article  PubMed  CAS  Google Scholar 

  51. Sato H, Bolli R, Rokosh GD, Bi Q, Dai S, Shirk G, Tang XL (2007) The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats. Am J Physiol Heart Circ Physiol 293:H2557–H2564. doi:10.1152/ajpheart.00858.2007

    Article  PubMed  CAS  Google Scholar 

  52. Shiau CW, Yang CC, Kulp SK, Chen KF, Chen CS, Huang JW, Chen CS (2005) Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARgamma. Cancer Res 65:1561–1569. doi:10.1158/0008-5472.CAN-04-1677

    Article  PubMed  CAS  Google Scholar 

  53. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  CAS  Google Scholar 

  54. Sugawara A, Uruno A, Kudo M, Matsuda K, Yang CW, Ito S (2010) Effects of PPARgamma on hypertension, atherosclerosis, and chronic kidney disease. Endocr J 57:847–852. doi:10.1507/endocrj.K10E-281

    Article  PubMed  CAS  Google Scholar 

  55. Takano H, Hasegawa H, Zou Y, Komuro I (2004) Pleiotropic actions of PPAR gamma activators thiazolidinediones in cardiovascular diseases. Curr Pharm Des 10:2779–2786. doi:10.2174/1381612043383719

    Article  PubMed  CAS  Google Scholar 

  56. Turturro F, Oliver R 3rd, Friday E, Nissim I, Welbourne T (2007) Troglitazone and pioglitazone interactions via PPAR-gamma-independent and -dependent pathways in regulating physiological responses in renal tubule-derived cell lines. Am J Physiol Cell Physiol 292:C1137–C1146. doi:10.1152/ajpcell.00396.2006

    Article  PubMed  CAS  Google Scholar 

  57. Wayman NS, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, Chatterjee PK, Thiemermann C (2002) Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. Faseb J 16:1027–1040. doi:10.1096/fj.01-0793com

    Article  PubMed  CAS  Google Scholar 

  58. Wynne AM, Mocanu MM, Yellon DM (2005) Pioglitazone mimics preconditioning in the isolated perfused rat heart: a role for the prosurvival kinases PI3 K and P42/44MAPK. J Cardiovasc Pharmacol 46:817–822. doi:10.1097/01.fjc.0000188365.07635.57

    Article  PubMed  CAS  Google Scholar 

  59. Xu L, Han C, Lim K, Wu T (2006) Cross-talk between peroxisome proliferator-activated receptor delta and cytosolic phospholipase A(2)alpha/cyclooxygenase-2/prostaglandin E(2) signaling pathways in human hepatocellular carcinoma cells. Cancer Res 66:11859–11868. doi:10.1158/0008-5472.CAN-06-1445

    Article  PubMed  CAS  Google Scholar 

  60. Xu Y, Gen M, Lu L, Fox J, Weiss SO, Brown RD, Perlov D, Ahmad H, Zhu P, Greyson C, Long CS, Schwartz GG (2005) PPAR-gamma activation fails to provide myocardial protection in ischemia and reperfusion in pigs. Am J Physiol Heart Circ Physiol 288:H1314–H1323. doi:10.1152/ajpheart.00618.2004

    Article  PubMed  CAS  Google Scholar 

  61. Yasuda S, Kobayashi H, Iwasa M, Kawamura I, Sumi S, Narentuoya B, Yamaki T, Ushikoshi H, Nishigaki K, Nagashima K, Takemura G, Fujiwara T, Fujiwara H, Minatoguchi S (2009) Antidiabetic drug pioglitazone protects the heart via activation of PPAR-gamma receptors, PI3-kinase, Akt, and eNOS pathway in a rabbit model of myocardial infarction. Am J Physiol Heart Circ Physiol 296:H1558–H1565. doi:10.1152/ajpheart.00712.2008

    Article  PubMed  CAS  Google Scholar 

  62. Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR (2010) Downregulation of microRNA-29 by antisense inhibitors and a PPAR-{gamma} agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res 87:535–544. doi:10.1093/cvr/cvq053

    Article  PubMed  CAS  Google Scholar 

  63. Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y (2010) The myocardial infarct size limiting effects of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol 298:H1454–H1465. doi:10.1152/ajpheart.00867.2009

    Article  PubMed  CAS  Google Scholar 

  64. Ye Y, Lin Y, Atar S, Huang MH, Perez-Polo JR, Uretsky BF, Birnbaum Y (2006) Myocardial protection by pioglitazone, atorvastatin, and their combination: mechanisms and possible interactions. Am J Physiol Heart Circ Physiol 291:H1158–H1169. doi:10.1152/ajpheart.00096.2006

    Article  PubMed  CAS  Google Scholar 

  65. Ye Y, Lin Y, Manickavasagam S, Perez-Polo JR, Tieu BC, Birnbaum Y (2008) Pioglitazone protects the myocardium against ischemia-reperfusion injury in eNOS and iNOS knockout mice. Am J Physiol Heart Circ Physiol 295:H2436–H2446. doi:10.1152/ajpheart.00690.2008

    Article  PubMed  CAS  Google Scholar 

  66. Ye Y, Lin Y, Perez-Polo JR, Birnbaum Y (2008) Oral glyburide, but not glimepiride, blocks the infarct-size limiting effects of pioglitazone. Cardiovasc Drugs Ther 22:429–436. doi:10.1007/s10557-008-6138-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant from Takeda Pharmaceuticals North America, Inc. We thank Rebecca Bartow, PhD, of the Texas Heart Institute at St. Luke’s Episcopal Ho spital, for editorial assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birnbaum, Y., Long, B., Qian, J. et al. Pioglitazone limits myocardial infarct size, activates Akt, and upregulates cPLA2 and COX-2 in a PPAR-γ-independent manner. Basic Res Cardiol 106, 431–446 (2011). https://doi.org/10.1007/s00395-011-0162-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0162-3

Keywords

Navigation