Skip to main content
Log in

Molecular characterization of thyroid hormone-inhibited atrial L-type calcium channel expression: implication for atrial fibrillation in hyperthyroidism

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is a common complication in hyperthyroidism. Earlier studies demonstrate that thyroid hormone decreases L-type calcium channel (LCC) current expression with resultant shortening of action potential duration (APD), providing a substrate for AF. The aim of this study was to investigate the potential mechanism underlying the regulatory effect of thyroid hormone on LCC. In a hyperthyroid rat model, thyroid hormone (triiodothyronine [T3]) administration down-regulated atrial LCC expression. In vitro, treatment of murine atrial myocytes (HL-1) with T3 decreased the expression of LCC and its current, resulting in abbreviation of APD. Furthermore, T3 inhibited the activation of cyclic AMP response element (CRE)-binding protein (CREB), including phosphorylation at Ser133 and its nuclear translocation. Transient transfection studies in HL-1 cells indicated that T3 reduced LCC promoter activity. Deletion and mutation analysis of the LCC promoter region along with chromatin immunoprecipitation using anti-CREB antibody showed that CRE was essential for T3-mediated LCC gene expression. Transfection of dominant-negative CREB (mutated Ser133) and mutant thyroid hormone receptor (TR, mutated Cys51) abolished the T3-dependent effects, suggesting an association between both transcriptional factors. Co-immunoprecipitation documented an increased binding of TR with CREB after T3 treatment. The transcriptional cross-talk 3 between TR and CREB bound to CRE mediates T3-inhibited CREB activity and LCC expression. Thyroid hormone-induced TR binding of CREB inhibits CREB activity and LCC current expression, which may contribute to AF. These findings provide an important mechanistic insight into hyperthyroidism-induced AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Auer J, Scheibner P, Mische T, Langsteger W, Eber O, Eber B (2001) Subclinical hyperthyroidism as a risk factor for atrial fibrillation. Am Heart J 142:838–842. doi:10.1067/mhj.2001.119370

    Article  CAS  PubMed  Google Scholar 

  2. Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kuhlkamp V (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 44:121–131. doi:10.1016/S0008-6363(99)00178-9

    Article  CAS  PubMed  Google Scholar 

  3. Burstein B, Libby E, Calderone A, Nattel S (2008) Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation 117:1630–1641. doi:10.1161/CIRCULATIONAHA.107.748053

    Article  PubMed  Google Scholar 

  4. Burstein B, Nattel S (2008) Atrial fibrosis: mechanism and clinical relevance in atrial fibrillation. J Am Coll Cardiol 51:802–809. doi:10.1016/j.jacc.2007.09.064

    Article  CAS  PubMed  Google Scholar 

  5. Cameiro-Ramos MS, Diniz GP, Nadu AP, Almeida J, Vieira RLP, Santos RAS, Barreto-Chaves MLM (2010) Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol 105:325–335. doi:10.1007/s00395-010-0089-0

    Article  Google Scholar 

  6. Chen RN, Huang YH, Lin YC, Yeh CT, Liang Y, Chen SL, Lin KH (2008) Thyroid hormone promotes cell invasion through activation of furin expression 25 in human hepatoma cell lines. Endocrinology 149:3817–3831. doi:10.1210/en.2007-0989

    Article  CAS  PubMed  Google Scholar 

  7. Chen WJ, Lin KH, Lee YS (2000) Molecular characterization of myocardial fibrosis during hypothyroidism. Mol Cell Endocrinol 162:45–55. doi:10.1016/S0303-7207(00)00203-3

    Article  CAS  PubMed  Google Scholar 

  8. Chen WJ, Pang JHS, Lin KH, Lee DY, Hsu LA, Kuo CT (2010) Propylthiouracil, independent of its antithyroid effect, promotes VSMC differentiation via PTEN induction. Basic Res Cardiol 105:19–28. doi:10.1007/s00395-009-0045-z

    Article  CAS  PubMed  Google Scholar 

  9. Chen YC, Chen SA, Chen YJ, Chang MS, Chan P, Lin CI (2002) Effects of thyroid hormone on the arrhythmogenic activity of pulmonary vein cardiomyocytes. J Am Coll Cardiol 39:366–372. doi:10.1016/S0735-1097(01)01731-4

    Article  CAS  PubMed  Google Scholar 

  10. Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  CAS  PubMed  Google Scholar 

  11. Diniz GP, Cameiro-Ramos MS, Barreto-Chaves MLM (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3β/mTOR signaling pathway. Basic Res Cardiol 104:653–667. doi:10.1007/s00395-009-0043-1

    Article  CAS  PubMed  Google Scholar 

  12. Glass CK (1994) Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev 15:391–407. doi:10.1210/edrv-15-3-391

    CAS  PubMed  Google Scholar 

  13. Harvey CB, Williams GR (2002) Mechanism of thyroid hormone action. Thyroid 12:441–446. doi:10.1089/105072502760143791

    Article  CAS  PubMed  Google Scholar 

  14. Hiroi Y, Kim HH, Ying H, Furuya F, Huang Z, Simoncini T, Noma K, Ueki K, Nguyen NH, Scanlan TS, Moskowitz MA, Cheng SY, Liao JK (2006) Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci USA 103:14104–14109. doi:10.1073/pnas.0601600103

    Article  CAS  PubMed  Google Scholar 

  15. Johannessen M, Delghandi MP, Moens U (2004) What turns CREB on? Cell Signal 16:1211–1227. doi:10.1016/j.cellsig.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  16. Kahaly GJ, Dillmann WH (2005) Thyroid hormone action in the heart. Endocr Rev 26:704–728. doi:10.1210/er.2003-0033

    Article  CAS  PubMed  Google Scholar 

  17. Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509

    Article  CAS  PubMed  Google Scholar 

  18. Komiya N, Isomoto S, Nakao K, Hayano M, Yano K (2002) Electrophysiological abnormalities of the atrial muscle in patients with paroxysmal atrial fibrillation associated with hyperthyroidism. Clin Endocrinol 56:39–44. doi:27101046/j0300-0664200101459x

    Article  Google Scholar 

  19. Laflamme L, Hamann G, Messier N, Maltais S, Langlois MF (2002) RXR acts as a coregulator in the regulation of genes of the hypothalamo-pituitary axis by thyroid hormone receptors. J Mol Endocrinol 29:61–72. doi:10.1677/jme.0.0290061

    Article  CAS  PubMed  Google Scholar 

  20. Maia AL, Harney JW, Larsen PR (1996) Is there a negative TRE in the luciferase reporter cDNA? Thyroid 6:325–328. doi:10.1089/thy.1996.6.325

    Article  CAS  PubMed  Google Scholar 

  21. Mendez-Pertuz M, Sanchez-Pacheco A, Aranda A (2003) The thyroid hormone receptor antagonizes CREB-mediated transcription. EMBO J 22:3102–3112. doi:10.1093/emboj/cdg295

    Article  CAS  PubMed  Google Scholar 

  22. Muller FU, Lewin G, Baba HA, Boknik P, Fabritz L, Kirchhefer U, Kirchhof P, Loser K, Matus M, Neumann J, Riemann B, Schmitz W (2005) Heart-directed expression of a human cardiac isoform of cAMP-response element modulator in transgenic mice. J Biol Chem 280:6906–6914. doi:10.1074/jbc.M407864200

    Article  PubMed  Google Scholar 

  23. Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226. doi:10.1038/415219a

    Article  CAS  PubMed  Google Scholar 

  24. Qi YX, Yeh YH, Xiao L, Burstein B, Maguy A, Chartier D, Villeneuve LR, Brundel BJJM, Dobrev D, Nattel S (2008) Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ Res 103:845–854. doi:10.1161/CIRCRESAHA.108.175463

    Google Scholar 

  25. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  CAS  PubMed  Google Scholar 

  26. Sawin CT, Geller A, Wolf PA, Belanger AJ, Baker E, Bacharach P, Wilson PM, Benjamin EJ, D’Agostino RB (1994) Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med 311:1249–1252

    Article  Google Scholar 

  27. Tsai CT, Wang DL, Chen WP, Hwang JJ, Hsieh CS, Hsu KL, Tseng CD, Lai LP, Tseng YZ, Chiang FT, Lin JL (2007) Angiotensin II increases expression of α1C subunit of L-type calcium channel through a reactive oxygen species and cAMP response element-binding protein-dependent pathway in HL-1 myocytes. Circ Res 100:1476–1485. doi:10.1161/01.RES.0000268497.93085.e1

    Article  CAS  PubMed  Google Scholar 

  28. Van Wagoner DR, Nerbonne JM (2000) Molecular basis of electrical remodeling in atrial fibrillation. J Mol Cell Cardiol 32:1101–1117. doi:10.1006/jmcc.2000.1147

    Article  PubMed  Google Scholar 

  29. Watanabe H, Ma M, Washizuka T, Komura S, Yoshida T, Hosaka Y, Hatada K, Chinushi M, Yamamoto T, Watanabe K, Aizawa Y (2003) Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium. Biochem Biophys Res Commun 308:439–444. doi:10.1016/S0006-291X(03)01420-7

    Article  CAS  PubMed  Google Scholar 

  30. Wikstrom L, Johansson C, Salto C, Barlow C, Barros AC, Baas F, Forrest D, Thoren P, Vennstrom B (1998) Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor α1. EMBO J 17:455–461. doi:10.1093/emboj/17.2.455

    Article  CAS  PubMed  Google Scholar 

  31. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S (1997) Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 81:512–525

    CAS  PubMed  Google Scholar 

  32. Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S (1999) Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 84:776–784

    CAS  PubMed  Google Scholar 

  33. Yu WC, Lee SH, Tai CT, Tsai CF, Hsieh MH, Chen CC, Ding YA, Chang MS, Chen SA (1999) Reversal of atrial electrical remodeling following cardioversion of long-standing atrial fibrillation in man. Cardiovasc Res 42:470–476. doi:10.1016/S0008-6363(99)00030-9

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Annu Rev Physiol 62:439–466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Chang Gung Research Grant Foundation [G32102 and G331023] and National Science Council Grants [NSC-94-2314-B-182A-198]. We thank Mr. Chih-Chun Chen for his technical assistance in confocal microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jan Chen.

Additional information

W.-J. Chen and Y.-H. Yeh contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 66 kb)

Supplementary material 2 (PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WJ., Yeh, YH., Lin, KH. et al. Molecular characterization of thyroid hormone-inhibited atrial L-type calcium channel expression: implication for atrial fibrillation in hyperthyroidism. Basic Res Cardiol 106, 163–174 (2011). https://doi.org/10.1007/s00395-010-0149-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0149-5

Keywords

Navigation