Skip to main content

Advertisement

Log in

Deficiency in TIMP-3 increases cardiac rupture and mortality post-myocardial infarction via EGFR signaling: beneficial effects of cetuximab

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Cardiac rupture is a fatal complication of myocardial infarction (MI); however, its underlying molecular mechanisms are not fully understood. This study investigated the role of tissue inhibitor of metalloproteinase-3 (TIMP-3)/matrix metalloproteinase (MMP)/epidermal growth factor (EGF)/transforming growth factor (TGF)-β1 pathway in infarct healing and effects of cetuximab on cardiac rupture after MI. Induction of MI was achieved by left coronary artery ligation in wild-type (WT) and TIMP-3−/− mice. TIMP-3 deficiency resulted in a fourfold increase in cardiac rupture and 50% decrease in survival after MI. Hydroxyproline content, collagen synthesis and myofibroblast cell number in the infarct region, and the force required to induce rupture of the infarct scar were significantly decreased, while MMP activity was increased in TIMP-3−/− mice. EGF proteins were increased by threefold in TIMP-3−/− mice following MI, while TGF-β1 mRNA levels were decreased by 68%. Cell proliferation of cultured adult cardiac myofibroblasts was significantly decreased in TIMP-3−/− compared to WT myofibroblasts. EGF treatment significantly decreased collagen synthesis and TGF-β1 expression. Conversely, TGF-β1 treatment increased collagen synthesis in cardiac myofibroblasts. Treatment with cetuximab significantly decreased the incidence of cardiac rupture and improved survival post-MI in TIMP-3−/− mice. We conclude that deficiency in TIMP-3 increases cardiac rupture post-MI via EGF/epidermal growth factor receptor (EGFR) signaling which downregulates TGF-β1 expression and collagen synthesis. Inhibition of EGFR by cetuximab protects against cardiac rupture and improves survival post-MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Becker RC, Gore JM, Lambrew C, Weaver WD, Rubison RM, French WJ, Tiefenbrunn AJ, Bowlby LJ, Rogers WJ (1996) A composite view of cardiac rupture in the United States National Registry of Myocardial Infarction. J Am Coll Cardiol 27:1321–1326. doi:10.1016/0735-1097(96)00008-3

    Article  PubMed  CAS  Google Scholar 

  2. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283. doi:10.1016/S0167-4838(99)00279-4

    Article  PubMed  CAS  Google Scholar 

  3. Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687. doi:10.1146/annurev.pharmtox.45.120403.095802

    Article  PubMed  CAS  Google Scholar 

  4. Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ (1995) Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 147:325–338

    PubMed  CAS  Google Scholar 

  5. Cosgaya JM, Aranda A (1996) Ras- and Raf-mediated regulation of transforming growth factor beta 1 gene expression by ligands of tyrosine kinase receptors in PC12 cells. Oncogene 12:2651–2660

    PubMed  CAS  Google Scholar 

  6. Creely JJ, DiMari SJ, Howe AM, Hyde CP, Haralson MA (1990) Effects of epidermal growth factor on collagen synthesis by an epithelioid cell line derived from normal rat kidney. Am J Pathol 136:1247–1257

    PubMed  CAS  Google Scholar 

  7. Fedak PW, Altamentova SM, Weisel RD, Nili N, Ohno N, Verma S, Lee TY, Kiani C, Mickle DA, Strauss BH, Li RK (2003) Matrix remodeling in experimental and human heart failure: a possible regulatory role for TIMP-3. Am J Physiol Heart Circ Physiol 284:H626–H634. doi:10.1152/ajpheart.00684.2002

    PubMed  CAS  Google Scholar 

  8. Fedak PW, Smookler DS, Kassiri Z, Ohno N, Leco KJ, Verma S, Mickle DA, Watson KL, Hojilla CV, Cruz W, Weisel RD, Li RK, Khokha R (2004) TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation 110:2401–2409. doi:10.1161/01.CIR.0000134959.83967.2D

    Article  PubMed  CAS  Google Scholar 

  9. Fedak PW, Verma S, Weisel RD, Li RK (2005) Cardiac remodeling and failure. From molecules to man (Part II). Cardiovasc Pathol 14:49–60. doi:10.1016/j.carpath.2005.03.004

    Article  PubMed  CAS  Google Scholar 

  10. Feng Q, Lu X, Jones DL, Shen J, Arnold JM (2001) Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 104:700–704. doi:10.1161/hc3201.092284

    Article  PubMed  CAS  Google Scholar 

  11. Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T, Yee SP (2002) Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 106:873–879. doi:10.1161/01.CIR.0000024114.82981.EA

    Article  PubMed  CAS  Google Scholar 

  12. Frampton JE (2010) Cetuximab: a review of its use in squamous cell carcinoma of the head and neck. Drugs 70:1987–2010. doi:10.2165/11205010-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  13. Frantz S, Hu K, Adamek A, Wolf J, Sallam A, Maier SK, Lonning S, Ling H, Ertl G, Bauersachs J (2008) Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 103:485–492. doi:10.1007/s00395-008-0739-7

    Article  PubMed  CAS  Google Scholar 

  14. Gallagher G, Menzie S, Huang Y, Jackson C, Hunyor SN (2007) Regional cardiac dysfunction is associated with specific alterations in inflammatory cytokines and matrix metalloproteinases after acute myocardial infarction in sheep. Basic Res Cardiol 102:63–72. doi:10.1007/s00395-006-0610-7

    Article  PubMed  CAS  Google Scholar 

  15. Gao XM, Xu Q, Kiriazis H, Dart AM, Du XJ (2005) Mouse model of post-infarct ventricular rupture: time course, strain- and gender-dependency, tensile strength, and histopathology. Cardiovasc Res 65:469–477. doi:10.1016/j.cardiores.2004.10.014

    Article  PubMed  CAS  Google Scholar 

  16. Garcia Arguinzonis MI, Galler AB, Walter U, Reinhard M, Simm A (2002) Increased spreading, Rac/p21-activated kinase (PAK) activity, and compromised cell motility in cells deficient in vasodilator-stimulated phosphoprotein (VASP). J Biol Chem 277:45604–45610. doi:10.1074/jbc.M202873200

    Article  PubMed  CAS  Google Scholar 

  17. Hammoud L, Burger DE, Lu X, Feng Q (2009) Tissue inhibitor of metalloproteinase-3 inhibits neonatal mouse cardiomyocyte proliferation via EGFR/JNK/SP-1 signaling. Am J Physiol Cell Physiol 296:C735–C745. doi:10.1152/ajpcell.00246.2008

    Article  PubMed  CAS  Google Scholar 

  18. Hayashidani S, Tsutsui H, Ikeuchi M, Shiomi T, Matsusaka H, Kubota T, Imanaka-Yoshida K, Itoh T, Takeshita A (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285:H1229–H1235. doi:10.1152/ajpheart.00207.2003

    PubMed  CAS  Google Scholar 

  19. Honan MB, Harrell FE Jr, Reimer KA, Califf RM, Mark DB, Pryor DB, Hlatky MA (1990) Cardiac rupture, mortality and the timing of thrombolytic therapy: a meta-analysis. J Am Coll Cardiol 16:359–367. doi:10.1016/0735-1097(90)90586-E

    Article  PubMed  CAS  Google Scholar 

  20. Hutchins KD, Skurnick J, Lavenhar M, Natarajan GA (2002) Cardiac rupture in acute myocardial infarction: a reassessment. Am J Forensic Med Pathol 23:78–82

    Article  PubMed  Google Scholar 

  21. Jankowski M, Bissonauth V, Gao L, Gangal M, Wang D, Danalache B, Wang Y, Stoyanova E, Cloutier G, Blaise G, Gutkowska J (2010) Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Res Cardiol 105:205–218. doi:10.1007/s00395-009-0076-5

    Article  PubMed  CAS  Google Scholar 

  22. Kumegawa M, Hiramatsu M, Hatakeyama K, Yajima T, Kodama H, Osaki T, Kurisu K (1983) Effects of epidermal growth factor on osteoblastic cells in vitro. Calcif Tissue Int 35:542–548. doi:10.1007/BF02405091

    Article  PubMed  CAS  Google Scholar 

  23. Kurata S, Hata R (1991) Epidermal growth factor inhibits transcription of type I collagen genes and production of type I collagen in cultured human skin fibroblasts in the presence and absence of l-ascorbic acid 2-phosphate, a long-acting vitamin C derivative. J Biol Chem 266:9997–10003

    PubMed  CAS  Google Scholar 

  24. Leask A (2007) TGFβ, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 74:207–212. doi:10.1016/j.cardiores.2006.07.012

    Article  PubMed  CAS  Google Scholar 

  25. Leask A, Abraham DJ (2004) TGF-β signaling and the fibrotic response. FASEB J 18:816–827. doi:10.1096/fj.03-1273rev

    Article  PubMed  CAS  Google Scholar 

  26. Leco KJ, Waterhouse P, Sanchez OH, Gowing KL, Poole AR, Wakeham A, Mak TW, Khokha R (2001) Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J Clin Invest 108:817–829. doi:10.1172/JCI12067

    PubMed  CAS  Google Scholar 

  27. Lovelock JD, Baker AH, Gao F, Dong JF, Bergeron AL, McPheat W, Sivasubramanian N, Mann DL (2005) Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am J Physiol Heart Circ Physiol 288:H461–H468. doi:10.1152/ajpheart.00402.2004

    Article  PubMed  CAS  Google Scholar 

  28. Lu X, Hamilton JA, Shen J, Pang T, Jones DL, Potter RF, Arnold JM, Feng Q (2006) Role of tumor necrosis factor-alpha in myocardial dysfunction and apoptosis during hindlimb ischemia and reperfusion. Crit Care Med 34:484–491. doi:10.1097/01.CCM.0000199079.64231.C1

    Article  PubMed  CAS  Google Scholar 

  29. Maelandsmo GM, Florenes VA, Nguyen MT, Flatmark K, Davidson B (2009) Different expression and clinical role of S100A4 in serous ovarian carcinoma at different anatomic sites. Tumour Biol 30:15–25. doi:10.1159/000199447

    Article  PubMed  CAS  Google Scholar 

  30. Maggioni AP, Maseri A, Fresco C, Franzosi MG, Mauri F, Santoro E, Tognoni G (1993) Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The Investigators of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI-2). N Engl J Med 329:1442–1448. doi:10.1056/NEJM199311113292002

    Article  PubMed  CAS  Google Scholar 

  31. Peng T, Lu X, Feng Q (2005) Pivotal role of gp91phox-containing NADH oxidase in lipopolysaccharide-induced tumor necrosis factor-alpha expression and myocardial depression. Circulation 111:1637–1644. doi:10.1161/01.CIR.0000160366.50210.E9

    Article  PubMed  CAS  Google Scholar 

  32. Peng T, Lu X, Lei M, Feng Q (2003) Endothelial nitric-oxide synthase enhances lipopolysaccharide-stimulated tumor necrosis factor-alpha expression via cAMP-mediated p38 MAPK pathway in cardiomyocytes. J Biol Chem 278:8099–8105. doi:10.1074/jbc.M207288200

    Article  PubMed  CAS  Google Scholar 

  33. Pollak H, Nobis H, Mlczoch J (1994) Frequency of left ventricular free wall rupture complicating acute myocardial infarction since the advent of thrombolysis. Am J Cardiol 74:184–186. doi:10.1016/0002-9149(94)90098-1

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez J, Viudez A, Ponz-Sarvise M, Gil-Aldea I, Chopitea A, Garcia-Foncillas J, Gil-Bazo I (2010) Improving disease control in advanced colorectal cancer: panitumumab and cetuximab. Crit Rev Oncol Hematol 74:193–202. doi:10.1016/j.critrevonc.2009.07.005

    Article  PubMed  Google Scholar 

  35. Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL (2008) Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol 103:60–68. doi:10.1007/s00395-007-0689-5

    Article  PubMed  CAS  Google Scholar 

  36. Sane DC, Mozingo WS, Becker RC (2009) Cardiac rupture after myocardial infarction: new insights from murine models. Cardiol Rev 17:293–299. doi:10.1097/CRD.0b013e3181bf4ab4

    Article  PubMed  Google Scholar 

  37. Sun Y, Kiani MF, Postlethwaite AE, Weber KT (2002) Infarct scar as living tissue. Basic Res Cardiol 97:343–347. doi:10.1007/s00395-002-0365-8

    Article  PubMed  Google Scholar 

  38. Tian H, Cimini M, Fedak PW, Altamentova S, Fazel S, Huang ML, Weisel RD, Li RK (2007) TIMP-3 deficiency accelerates cardiac remodeling after myocardial infarction. J Mol Cell Cardiol 43:733–743. doi:10.1016/j.yjmcc.2007.09.003

    Article  PubMed  CAS  Google Scholar 

  39. Tiede K, Melchior-Becker A, Fischer JW (2010) Transcriptional and posttranscriptional regulators of biglycan in cardiac fibroblasts. Basic Res Cardiol 105:99–108. doi:10.1007/s00395-009-0049-8

    Article  PubMed  CAS  Google Scholar 

  40. Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N, Richter U, Fischer JW, Bohm M, Pauschinger M, Schultheiss HP, Tschope C (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103:319–327. doi:10.1007/s00395-008-0715-2

    Article  PubMed  Google Scholar 

  41. Wang B, Omar A, Angelovska T, Drobic V, Rattan SG, Jones SC, Dixon IM (2007) Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofibroblasts. Am J Physiol Heart Circ Physiol 293:H1282–H1290. doi:10.1152/ajpheart.00910.2006

    Article  PubMed  CAS  Google Scholar 

  42. Woessner JF Jr (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447. doi:10.1016/0003-9861(61)90291-0

    Article  PubMed  CAS  Google Scholar 

  43. Yang TT, Hawkes SP (1992) Role of the 21-kDa protein TIMP-3 in oncogenic transformation of cultured chicken embryo fibroblasts. Proc Natl Acad Sci USA 89:10676–10680. doi:10.1073/pnas.89.22.10676

    Article  PubMed  CAS  Google Scholar 

  44. Zarzynska J, Gajewska M, Motyl T (2005) Effects of hormones and growth factors on TGF-beta1 expression in bovine mammary epithelial cells. J Dairy Res 72:39–48. doi:10.1017/S0022029904000639

    Article  PubMed  CAS  Google Scholar 

  45. Zhong H, Simons JW (1999) Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res Commun 259:523–526. doi:10.1006/bbrc.1999.0815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by operating grants from Canadian Institutes of Health Research (CIHR) awarded to Dr. Qingping Feng. Lamis Hammoud was supported by a Heart and Stroke Foundation of Canada Doctoral Research Award. Dr. Feng is a Heart and Stroke Foundation of Ontario Career Investigator.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingping Feng.

Additional information

L. Hammoud and X. Lu both contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammoud, L., Lu, X., Lei, M. et al. Deficiency in TIMP-3 increases cardiac rupture and mortality post-myocardial infarction via EGFR signaling: beneficial effects of cetuximab. Basic Res Cardiol 106, 459–471 (2011). https://doi.org/10.1007/s00395-010-0147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0147-7

Keywords

Navigation