Skip to main content
Log in

Blockage of Angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Although most of effects of Angiotensin II (Ang II) related to cardiac remodelling can be attributed to type 1 Ang II receptor (AT1R), the type 2 receptor (AT2R) has been shown to be involved in the development of some cardiac hypertrophy models. In the present study, we investigated whether the thyroid hormone (TH) action leading to cardiac hypertrophy is also mediated by increased Ang II levels or by change on AT1R and AT2R expression, which could contribute to this effect. In addition, we also evaluated the possible contribution of AT2R in the activation of Akt and in the development of TH-induced cardiac hypertrophy. To address these questions, Wistar rats were treated with thyroxine (T4, 0.1 mg/kg BW/day, i.p.), with or without AT2R blocker (PD123319), for 14 days. Cardiac hypertrophy was identified based on heart/body weight ratio and confirmed by analysis of atrial natriuretic factor mRNA expression. Cardiomyocyte cultures were used to exclude the influence of TH-related hemodynamic effects. Our results demonstrate that the cardiac Ang II levels were significantly increased (80%, P < 0.001) as well as the AT2R expression (50%, P < 0.05) in TH-induced cardiac hypertrophy. The critical involvement of AT2R to the development of this cardiac hypertrophy in vivo was evidenced after administration of AT2 blocker, which was able to prevent in 40% (P < 0.01) the cardiac mass gain and the Akt activation induced by TH. The role of AT2R to the TH-induced cardiomyocyte hypertrophy was also confirmed after using PD123319 in the in vitro studies. These findings improve understanding of the cardiac hypertrophy observed in hyperthyroidism and provide new insights into the generation of future therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barreto-Chaves ML, Heimann A, Krieger JE (2000) Stimulatory effect of dexamethasone on angiotensin-converting enzyme in neonatal rat cardiac myocytes. Braz J Med Biol Res 33:661–664

    Article  CAS  PubMed  Google Scholar 

  2. Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281:H2337–H2365

    CAS  PubMed  Google Scholar 

  3. Billet S, Aguilar F, Baudry C, Clauser E (2008) Role of angiotensin II AT1 receptor activation in cardiovascular diseases. Kidney Int 74:1379–1384

    Article  CAS  PubMed  Google Scholar 

  4. Booz GW (2004) Cardiac angiotensin AT2 receptor: what exactly does it do? Hypertension 43:1162–1163

    Article  CAS  PubMed  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  6. Brent GA, Williams GR, Harney JW, Forman BM, Samuels HH, Moore DD, Larsen PR (1991) Effects of varying the position of thyroid hormone response elements within the rat growth hormone promoter: implications for positive and negative regulation by 3,5,3′-triiodothyronine. Mol Endocrinol 5:542–548

    Article  CAS  PubMed  Google Scholar 

  7. Burrow GN (1994) Thyroid dysfunction in the recently pregnant: postpartum thyroiditis. Thyroid 4:363–365

    Article  CAS  PubMed  Google Scholar 

  8. Carneiro-Ramos MS, da Silva VB, Coutinho MB Jr, Battastini AM, Sarkis JJ, Barreto-Chaves ML (2004) Thyroid hormone stimulates 5′-ecto-nucleotidase of neonatal rat ventricular myocytes. Mol Cell Biochem 265:195–201

    Article  CAS  PubMed  Google Scholar 

  9. Carneiro-Ramos MS, Diniz GP, Almeida J, Vieira RL, Pinheiro SV, Santos RA, Barreto-Chaves ML (2007) Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism. J Physiol 583:213–223

    Article  CAS  PubMed  Google Scholar 

  10. Carneiro-Ramos MS, Silva VB, Santos RA, Barreto-Chaves ML (2006) Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism. Peptides 11:2942–2949

    Article  Google Scholar 

  11. Caruso-Neves C, Kwon SH, Guggino WB (2005) Albumin endocytosis in proximal tubule cells is modulated by angiotensin II through an AT2 receptor-mediated protein kinase B activation. Proc Natl Acad Sci USA 102:17513–17518

    Article  CAS  PubMed  Google Scholar 

  12. D’Amore A, Black MJ, Thomas WG (2005) The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension 46:1347–1354

    Article  PubMed  Google Scholar 

  13. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  14. Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2007) Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch 454:75–81

    Article  CAS  PubMed  Google Scholar 

  15. Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 104:653–667

    Article  CAS  PubMed  Google Scholar 

  16. Dostal DE, Rothblum KN, Conrad KM, Cooper GR, Baker KM (1992) Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol 263:C851–C863

    CAS  PubMed  Google Scholar 

  17. Eppenberger-Eberhardt M, Aigner S, Donath MY, Kurer V, Walther P, Zuppinger C, Schaub MC, Eppenberger HM (1997) IGF-I and bFGF differentially influence atrial natriuretic factor and alpha-smooth muscle actin expression in cultured atrial compared to ventricular adult rat cardiomyocytes. J Mol Cell Cardiol 29:2027–2039

    Article  CAS  PubMed  Google Scholar 

  18. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:279–297

    Article  CAS  PubMed  Google Scholar 

  19. Gosteli-Peter MA, Harder BA, Eppenberger HM, Zapf J, Schaub MC (1996) Triiodothyronine induces over-expression of alpha-smooth muscle actin, restricts myofibrillar expansion and is permissive for the action of basic fibroblast growth factor and insulin-like growth factor I in adult rat cardiomyocytes. J Clin Invest 98:1737–1744

    Article  CAS  PubMed  Google Scholar 

  20. Horiuchi M, Akishita M, Dzau VJ (1999) Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33:613–621

    CAS  PubMed  Google Scholar 

  21. Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML (2003) Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin–angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol 285:R1473–R1480

    CAS  PubMed  Google Scholar 

  22. Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T (2001) Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation 104:346–351

    CAS  PubMed  Google Scholar 

  23. Kahaly GJ, Dillmann WH (2005) Thyroid hormone action in the heart. Endocr Rev 26:704–728

    Article  CAS  PubMed  Google Scholar 

  24. Katz AM (2003) Pathophysiology of heart failure: identifying targets for pharmacotherapy. Med Clin North Am 87:303–316

    Article  CAS  PubMed  Google Scholar 

  25. Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672

    Article  CAS  PubMed  Google Scholar 

  26. Klein I (2003) Thyroid hormone and cardiac contractility. Am J Cardiol 91:1331–1332

    Article  PubMed  Google Scholar 

  27. Klein I (1990) Thyroid hormone and the cardiovascular system. Am J Med 88:631–637

    Article  CAS  PubMed  Google Scholar 

  28. Klein I (1988) Thyroxine-induced cardiac hypertrophy: time course of development and inhibition by propranolol. Endocrinology 123:203–210

    Article  CAS  PubMed  Google Scholar 

  29. Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T (1999) Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol 160:43–47

    Article  CAS  PubMed  Google Scholar 

  30. Kobori H, Ichihara A, Suzuki H, Miyashita Y, Hayashi M, Saruta T (1997) Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic nervous system. Am J Physiol 272:E227–E232

    CAS  PubMed  Google Scholar 

  31. Kuzman JA, Vogelsang KA, Thomas TA, Gerdes AM (2005) l-Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol 39:251–258

    Article  CAS  PubMed  Google Scholar 

  32. Levy BI, Benessiano J, Henrion D, Caputo L, Heymes C, Duriez M, Poitevin P, Samuel JL (1996) Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J Clin Invest 98:418–425

    Article  CAS  PubMed  Google Scholar 

  33. Lindpaintner K, Lu W, Neidermajer N, Schieffer B, Just H, Ganten D, Drexler H (1993) Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 25:133–143

    Article  CAS  PubMed  Google Scholar 

  34. Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA (1997) Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99:1926–1935

    Article  CAS  PubMed  Google Scholar 

  35. Mifune M, Sasamura H, Shimizu-Hirota R, Miyazaki H, Saruta T (2000) Angiotensin II type 2 receptors stimulate collagen synthesis in cultured vascular smooth muscle cells. Hypertension 36:845–850

    CAS  PubMed  Google Scholar 

  36. Miki T, Miura T, Tanno M, Nishihara M, Naitoh K, Sato T, Takahashi A, Shimamoto K (2007) Impairment of cardioprotective PI3K-Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Res Cardiol 102:163–170

    Article  CAS  PubMed  Google Scholar 

  37. Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 83:13–25

    CAS  PubMed  Google Scholar 

  38. Nouet S, Amzallag N, Li JM, Louis S, Seitz I, Cui TX, Alleaume AM, Di Benedetto M, Boden C, Masson M, Strosberg AD, Horiuchi M, Couraud PO, Nahmias C (2004) Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chem 279:28989–28997

    Article  CAS  PubMed  Google Scholar 

  39. Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260

    Article  CAS  PubMed  Google Scholar 

  40. Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318

    Article  CAS  PubMed  Google Scholar 

  41. Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118:277–294

    Article  CAS  PubMed  Google Scholar 

  42. Porrello ER, Delbridge LM, Thomas WG (2009) The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor. Front Biosci 14:958–972

    Article  CAS  PubMed  Google Scholar 

  43. Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423

    CAS  PubMed  Google Scholar 

  44. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263

    Article  CAS  PubMed  Google Scholar 

  45. Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 106:R25–R29

    Article  CAS  PubMed  Google Scholar 

  46. Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E Jr, Roberts RL, Imboden H, Fitzgerald TG, Gaffney FA, Inagami T (2003) A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J 22:6471–6482

    Article  CAS  PubMed  Google Scholar 

  47. Tsuzuki S, Matoba T, Eguchi S, Inagami T (1996) Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension 28:916–918

    CAS  PubMed  Google Scholar 

  48. Tuxworth WJ Jr, Shiraishi H, Moschella PC, Yamane K, McDermott PJ, Kuppuswamy D (2008) Translational activation of 5′-TOP mRNA in pressure overload myocardium. Basic Res Cardiol 103:41–53

    Article  CAS  PubMed  Google Scholar 

  49. Yamada T, Horiuchi M, Dzau VJ (1996) Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study received financial support in the form of grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo; grant nos. 01/11678-8 and 03/04638-8) and from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. M. Barreto-Chaves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carneiro-Ramos, M.S., Diniz, G.P., Nadu, A.P. et al. Blockage of Angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol 105, 325–335 (2010). https://doi.org/10.1007/s00395-010-0089-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0089-0

Keywords

Navigation