Skip to main content

Advertisement

Log in

HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: an MRI study

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

To determine the effect of intracoronary transfer of superparamagnetic iron oxide (SPIO) labeled heme oxygenase-1 (HO-1) overexpressed bone marrow stromal cells (BMSCs) in a porcine myocardial ischemia/reperfusion model. Cell apoptosis was assayed and supernatant cytokine concentrations were measured in BMSCs that underwent hypoxia/reoxygen in vitro. Female mini-swines that underwent 1 h LAD occlusion followed by 1 h reperfusion were randomly allocated to receive intracoronary saline (control), 1 × 107 SPIO-labeled BMSCs transfected with pcDNA3.1-Lacz plasmid (Lacz-BMSCs), pcDNA3.1-human HO-1 (HO-1-BMSCs), pcDNA3.1-hHO-1 pretreated with a HO inhibitor, tin protoporphyrin (SnPP, n = 10 each). MRI and postmortem histological analysis were made at 1 week or 3 months thereafter. Post hypoxia/reoxygen in vitro, apoptosis was significantly reduced, supernatant VEGF significantly increased while TNF-α and IL-6 significantly reduced in HO-1-BMSCs group compared with Lacz-BMSCs group (all p < 0.05). Myocardial expression of VEGF was significantly higher in HO-1-BMSCs than in Lacz-BMSCs group at 1 week post transplantation (all p < 0.05). Signal voids induced by the SPIO were detected in the peri-infarction region in all BMSC groups at 1 week but not at 3 months post transplantation and the extent of the hypointense signal was the highest in HO-1-BMSCs group, and histological analysis showed that signal voids represented cardiac macrophages that engulfed the SPIO-labeled BMSCs. Pretreatment with SnPP significantly attenuated the beneficial effects of HO-1-BMSCs. Transplantation of HO-1-overexpressed BMSCs significantly enhanced the beneficial effects of BMSCs on improving cardiac function in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G, Lehrke S, Baumgartner WW, Martin BJ, Heldman AW, Hare JM (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102:11474–11479

    Article  CAS  PubMed  Google Scholar 

  2. Arai T, Kofidis T, Bulte JW, de Bruin J, Venook RD, Berry GJ, Mcconnell MV, Quertermous T, Robbins RC, Yang PC (2006) Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magn Reson Med 55:203–209

    Article  PubMed  Google Scholar 

  3. Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, Ocherashvilli A, Holbova R, Yosef O, Barbash IM, Leor J (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116:I38–I45

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Dor I, Fuchs S, Kornowski R (2006) Potential hazards and technical considerations associated with myocardial cell transplantation protocols for ischemic myocardial syndrome. J Am Coll Cardiol 48:1519–1526

    Article  PubMed  Google Scholar 

  5. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  CAS  PubMed  Google Scholar 

  6. Carr CA, Stuckey DJ, Tatton L, Tyler DJ, Hale SJ, Sweeney D, Schneider JE, Martin-Rendon E, Radda GK, Harding SE, Watt SM, Clarke K (2008) Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: an in vivo cine-MRI study. Am J Physiol Heart Circ Physiol 295:H533–H542

    Article  CAS  PubMed  Google Scholar 

  7. Dörge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker KA, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNF-alpha in contractile dysfunction. J Mol Cell Cardiol 34:51–62

    Article  PubMed  Google Scholar 

  8. Dai Y, Xu M, Wang Y, Pasha Z, Li T, Ashraf M (2007) HIF-1alpha induced-VEGF overexpression in bone marrow stem cells protects cardiomyocytes against ischemia. J Mol Cell Cardiol 42:1036–1044

    Article  CAS  PubMed  Google Scholar 

  9. Foresti R, Sarathchandra P, Clark JE, Green CJ, Motterlini R (1999) Peroxynitrite induces haem oxygenase-1 in vascular endothelial cells: a link to apoptosis. Biochem J 339:729–736

    Article  CAS  PubMed  Google Scholar 

  10. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368

    Article  CAS  PubMed  Google Scholar 

  11. Guo J, Lin GS, Bao CY, Hu ZM, Hu MY (2007) Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation 30:97–104

    Article  CAS  PubMed  Google Scholar 

  12. Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, Martin BJ, Quyyumi AA, Few WL, Kin H, Guyton RA, Vinten-Johansen J (2008) Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 103:525–536

    Article  PubMed  Google Scholar 

  13. Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, Pessanha BS, Guttman MA, Varney TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014

    Article  PubMed  Google Scholar 

  14. He G, Zhang H, Wei H, Wang Y, Zhang X, Tang Y, Wei Y, Hu S (2007) In vivo imaging of bone marrow mesenchymal stem cells transplanted into myocardium using magnetic resonance imaging: a novel method to trace the transplanted cells. Int J Cardiol 114:4–10

    Article  PubMed  Google Scholar 

  15. Herbert JM (2004) Effects of ADP-receptor antagonism beyond traditional inhibition of platelet aggregation. Expert Opin Investig Drugs 13:457–460

    Article  CAS  PubMed  Google Scholar 

  16. Koch KC, Schaefer WM, Liehn EA, Rammos C, Mueller D, Schroeder J, Dimassi T, Stopinski T, Weber C (2006) Effect of catheter-based transendocardial delivery of stromal cell-derived factor 1 alpha on left ventricular function and perfusion in a porcine model of myocardial infarction. Basic Res Cardiol 101:69–77

    Article  CAS  PubMed  Google Scholar 

  17. Kosmala W, Przewlocka-Kosmala M, Mazurek W (2005) Proinflammatory cytokines and myocardial viability in patients after acute myocardial infarction. Int J Cardiol 101:449–456

    Article  PubMed  Google Scholar 

  18. Kirshenbaum LA, de Moissac D (1997) The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation 96:1580–1585

    CAS  PubMed  Google Scholar 

  19. Kraitchman DL, Bulte JW (2008) Imaging of stem cells using MRI. Basic Res Cardiol 103:105–113

    Article  CAS  PubMed  Google Scholar 

  20. Lyngbaek S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102:101–114

    Article  PubMed  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Ma N, Ong LL, Nesselmann C, Nesselmann C, Klopsch C, Ladilov Y, Furlani D, Piechaczek C, Moebius JM, Lützow K, Lendlein A, Stamm C, Li RK, Steinhoff G (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25:2118–2127

    Article  CAS  PubMed  Google Scholar 

  23. Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154:363–374

    CAS  PubMed  Google Scholar 

  24. Moelker AD, Baks T, Wever KM, Spitskovsky D, Wielopolski PA, van Beusekom HM, van Geuns RJ, Wnendt S, Duncker DJ, van der Giessen WJ (2007) Intracoronary delivery of umbilical cord blood derived unrestricted somatic stem cells is not suitable to improve LV function after myocardial infarction in swine. J Mol Cell Cardiol 42:735–745

    Article  CAS  PubMed  Google Scholar 

  25. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135

    Article  PubMed  Google Scholar 

  26. Psaltis PJ, Zannettino AC, Worthley SG, Gronthos S (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26:2201–2210

    Article  PubMed  Google Scholar 

  27. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  28. Perin EC, Silva GV, Assad JA, Vela D, Buja LM, Sousa AL, Litovsky S, Lin J, Vaughn WK, Coulter S, Fernandes MR, Willerson JT (2008) Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol 44:486–495

    Article  CAS  PubMed  Google Scholar 

  29. Poncelet AJ, Vercruysse J, Saliez A, Gianello P (2007) Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 83:783–790

    Article  PubMed  Google Scholar 

  30. Schächinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 44:1690–1699

    Article  PubMed  Google Scholar 

  31. Schuh A, Liehn EA, Sasse A, Schneider R, Neuss S, Weber C, Kelm M, Merx MW (2009) Improved left ventricular function after transplantation of microspheres and fibroblasts in a rat model of myocardial infarction. Basic Res Cardiol 104:403–411

    Article  PubMed  Google Scholar 

  32. Schuleri KH, Amado LC, Boyle AJ, Centola M, Saliaris AP, Gutman MR, Hatzistergos KE, Oskouei BN, Zimmet JM, Young RG, Heldman AW, Lardo AC, Hare JM (2008) Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol 294:H2002–H2011

    Article  CAS  PubMed  Google Scholar 

  33. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Article  CAS  PubMed  Google Scholar 

  34. Shujia J, Haider HK, Idris NM, Lu G, Ashraf M (2008) Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res 77:525–533

    Article  CAS  PubMed  Google Scholar 

  35. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146

    Article  CAS  PubMed  Google Scholar 

  36. Sadek HA, Garry DJ (2008) Letter by Sadek and Garry regarding article, iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 117:e306

    Article  PubMed  Google Scholar 

  37. Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46:1339–1350

    Article  CAS  PubMed  Google Scholar 

  38. Templin C, Kotlarz D, Marquart F, Faulhaber J, Brendecke V, Schaefer A, Tsikas D, Bonda T, Hilfiker-Kleiner D, Ohl L, Naim HY, Foerster R, Drexler H, Limbourg FP (2006) Transcoronary delivery of bone marrow cells to the infarcted murine myocardium: feasibility, cellular kinetics, and improvement in cardiac function. Basic Res Cardiol 101:301–310

    Article  PubMed  Google Scholar 

  39. Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28:2667–2677

    Article  PubMed  Google Scholar 

  40. van den Bos EJ, Baks T, Moelker AD, Kerver W, van Geuns RJ, van der Giessen WJ, Duncker DJ, Wielopolski PA (2006) Magnetic resonance imaging of haemorrhage within reperfused myocardial infarcts: possible interference with iron oxide-labelled cell tracking? Eur Heart J 27:1620–1626

    Article  PubMed  Google Scholar 

  41. Vulliet PR, Greeley M, Halloran SM, MacDonald KA, Kittleson MD (2004) Intracoronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 363:783–784

    Article  PubMed  Google Scholar 

  42. Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, Fishbein MC, Gambhir SS (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108:1302–1305

    Article  PubMed  Google Scholar 

  43. Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M (2007) In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol 42:441–448

    Article  CAS  PubMed  Google Scholar 

  44. Yeh CH, Chen TP, Wang YC, Lin YM, Lin PJ (2009) HO-1 activation can attenuate cardiomyocytic apoptosis via inhibition of NF-kappaB and AP-1 translocation following cardiac global ischemia and reperfusion. J Surg Res 155:147–156

    Article  CAS  PubMed  Google Scholar 

  45. Zeng B, Chen H, Zhu C, Ren X, Lin G, Cao F (2008) Effects of combined mesenchymal stem cells and heme oxygenase-1 therapy on cardiac performance. Eur J Cardiothorac Surg 34:850–856

    Article  PubMed  Google Scholar 

  46. Zhang H, Song P, Tang Y, Zhang XL, Zhao SH, Wei YJ, Hu SS (2007) Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: heart status and cell distribution. J Thorac Cardiovasc Surg 134:1234–1240

    Article  CAS  PubMed  Google Scholar 

  47. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33:907–921

    Article  CAS  PubMed  Google Scholar 

  48. Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, Koc ON, Penn MS (2007) SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J 21:3197–3207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program in China (no. 30670853).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genshan Ma or Chengxing Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Chen, L., Tang, Y. et al. HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: an MRI study. Basic Res Cardiol 105, 431–442 (2010). https://doi.org/10.1007/s00395-009-0079-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0079-2

Keywords

Navigation