Skip to main content
Log in

Role of the Innate Immune System in Acute Viral Myocarditis

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Although the adaptive immune system is thought to play an important role in the pathogenesis of viral myocarditis, the role of the innate immune system has not been well defined. To address this deficiency, we employed a unique line of mice that harbor a genomic “knock in” of a mutated TNF gene lacking the AU rich element (TNFARE/ARE) that is critical for TNF mRNA stability and translation, in order to examine the contribution of the innate immune system in encephalomyocarditis-induced myocarditis (EMCV). Heterozygous mice (TNFARE/+) were infected with 500 plaque-forming units of EMCV. TNFARE/+mice had a significantly higher 14-day mortality and myocardial inflammation when compared to littermate control mice. Virologic studies showed that the viral load at 14 days was significantly lower in the hearts of TNFARE/+ mice. TNFARE/+ mice had an exaggerated proinflammatory cytokine and chemokine response in the heart following EMCV infection. Modulation of the innate immune response in TNFARE/+ mice by the late administration of prednisolone resulted in a significant improvement in survival and decreased cardiac inflammation, whereas early administration of prednisolone resulted in a blunted innate response and increased mortality in littermate control mice. Viewed together, these data suggest that the duration and degree of activation of the innate immune system plays a critical role in determining host outcomes in experimental viral myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akira S (2004) Toll receptor families: structure and function. Semin Immunol 16:1–2

    Article  PubMed  CAS  Google Scholar 

  2. Baumgarten G, Knuefermann P, Nozaki N, Sivasubramanian N, Mann DL, Vallejo JG (2001) In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J Infect Dis 183:1617–1624

    Article  PubMed  CAS  Google Scholar 

  3. Bowles NE, Ni J, Kearney DL, Pauschinger M, Schultheiss HP, McCarthy R, Hare J, Bricker JT, Bowles KR, Towbin JA (2003) Detection of viruses in myocardial tissues by polymerase chain reaction. Evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol 42:466–472

    Article  PubMed  Google Scholar 

  4. Bowles NE, Richardson PJ, Olsen EGJ, Archard LC (1986) Detection of Coxsackie-B-Virus-Specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1:1120–1124

    Article  PubMed  CAS  Google Scholar 

  5. Bowles NE, Rose ML, Taylor P, Banner NR, Morgancapner P, Cunningham L, Archard LC, Yacoub MH (1989) End-stage dilated cardiomyopathy—persistence of enterovirus RNA in myocardium at cardiac transplantation and lack of immune-response. Circulation 80:1128–1136

    PubMed  CAS  Google Scholar 

  6. Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, Sonderegger I, Bachmaier K, Kopf M, Penninger JM (2003) Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9:1484–1490

    Article  PubMed  CAS  Google Scholar 

  7. Fairweather D, Yusung S, Frisancho S, Barrett M, Gatewood S, Steele R, Rose NR (2003) IL-12 receptor beta 1 and Toll-like receptor 4 increase IL-1 beta- and IL-18-associated myocarditis and coxsackievirus replication. J Immunol 170:4731–4737

    PubMed  CAS  Google Scholar 

  8. Feldman AM, McNamara D (2000) Myocarditis. N Engl J Med 343:1388–1398

    Article  PubMed  CAS  Google Scholar 

  9. Frangogiannis NG, Entman ML (2004) Targeting the chemokines in myocardial inflammation. Circulation 110: 1341–1342

    Article  PubMed  Google Scholar 

  10. Gallagher G, Menzie S, Huang YF, Jackson C, Hunyor SN (2007) Regional cardiac dysfunction is associated with specific alterations in inflammatory cytokines and matrix metalloproteinases after acute myocardial infarction in sheep. Basic Res Cardiol 102:63–72

    Article  PubMed  CAS  Google Scholar 

  11. Hardarson HS, Baker JS, Yang Z, Purevjav E, Huang CH, Alexopoulou L, Li N, Flavell R, Bowles NE, Vallejo JG (2007) Toll-like receptors 3 is an essential component of the innate stress response in virus-induced cardiac injury. Am J Physiol Heart Circ Physiol 292:H251–H2518

    Article  PubMed  CAS  Google Scholar 

  12. Huber SA (1997) Autoimmunity in myocarditis: Relevance of animal models. Clin Immunol Immunopathol 83:93–102

    Article  PubMed  CAS  Google Scholar 

  13. Kanda T, McManus JE, Nagai R, Imai S, Suzuki T, Yang D, McManus BM, Kobayashi I (1996) Modification of viral myocarditis in mice by interleukin-6. Circ Res 78:848–856

    PubMed  CAS  Google Scholar 

  14. Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137

    Article  PubMed  CAS  Google Scholar 

  15. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:387–398

    Article  PubMed  CAS  Google Scholar 

  16. Kubota T, Bounoutas GS, Miyagishima M, Kadokami T, Sanders VJ, Bruton C, Robbins PD, McTiernan CF, Feldman AM (2000) Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. Circulation 101:2518–2525

    PubMed  CAS  Google Scholar 

  17. Liu P, Aitken K, Kong YY, Opavsky MA, Martino T, Dawood F, Wen WH, Kozieradzki I, Bachmaier K, Straus D, Mak TW, Penninger JM (2000) The tyrosine kinase p56(lck) is essential in coxsackievirus B3-mediated heart disease. Nat Med 6:429–434

    Article  PubMed  CAS  Google Scholar 

  18. Liu P, Martino T, Opavsky MA, Penninger J (1996) Viral myocarditis: balance between viral infection and immune response. Can J Cardiol 12:935–943

    PubMed  CAS  Google Scholar 

  19. Mason JW, O’Connell JB, Herskowitz A, Rose NR, McManus BM, Billingham ME, Moon TE (1995) A clinical trial of immunosuppressive therapy for myocarditis. The myocarditis treatment trial investigators. N Engl J Med 333:269–275

    Article  PubMed  CAS  Google Scholar 

  20. Matsumori A (1992) Lessons from animal-experiments in myocarditis. Herz 17:107–111

    PubMed  CAS  Google Scholar 

  21. Matsumori A (1997) Molecular and immune mechanisms in the pathogenesis of cardiomyopathy—role of viruses, cytokines, and nitric oxide. Jpn Circ J 61:275–291

    Article  PubMed  CAS  Google Scholar 

  22. Matsumori A, Yamada T, Suzuki H, Matoba Y, Sasayama S (1994) Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 72:561–566

    Article  PubMed  CAS  Google Scholar 

  23. Opavsky MA, Penninger J, Aitken K, Wen WH, Dawood F, Mak T, Liu P (1999) Susceptibility to myocarditis is dependent on the response of alphabeta T lymphocytes to coxsackieviral infection. Circ Res 85:551–558

    PubMed  CAS  Google Scholar 

  24. Satoh M, Tamura G, Segawa I, Tashiro A, Hiramori K, Satodate R (1996) Expression of cytokine genes and presence of enteroviral genomic RNA in endomyocardial biopsy tissues of myocarditis and dilated cardiomyopathy. Virchows Archiv 427:503–509

    Article  PubMed  CAS  Google Scholar 

  25. Shen Y, Xu W, Chu YW, Wang Y, Liu QS, Xiong SD (2004) Coxsackievirus group B type 3 infection upregulates expression of monocyte chemoattractant protein 1 in cardiac myocytes, which leads to enhanced migration of mononuclear cells in viral myocarditis. J Virol 78:12548–12556

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka T, Kanda T, McManus BM, Kanai H, Akiyama H, Sekiguchi K, Yokoyama T, Kurabayashi M (2001) Overexpression of interleukin-6 aggravates viral myocarditis: impaired increase in tumor necrosis factor-alpha. J Mol Cell Cardiol 33:1627–1635

    Article  PubMed  CAS  Google Scholar 

  27. Tomioka N, Kishimoto C, Matsumori A, Kawai C (1986) Effects of prednisolone on acute viral myocarditis in mice. J Am Coll Cardiol 7:868–872

    Article  PubMed  CAS  Google Scholar 

  28. Wada H, Saito K, Kanda T, Kobayashi I, Fujii H, Fujigaki S, Maekawa N, Takatsu H, Fujiwara H, Sekikawa K, Seishima M (2001) Tumor necrosis factor-alpha (TNF-alpha) plays a protective role in acute viralmyocarditis in mice: A study using mice lacking TNF-alpha. Circulation 103:743–749

    PubMed  CAS  Google Scholar 

  29. Westermann D, Van Linthout S, Dhayat S, Dhayat N, Schmidt A, Noutsias M, Song XY, Spillmann F, Riad A, Schultheiss HP, Tschope C (2007) Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102:500–507

    Article  PubMed  CAS  Google Scholar 

  30. Wood Shelly. Immunosuppression improves LV function in virus-negative inflammatory cardiomyopathy. http://www.theheart.org/article/901601.do.9-3-0008

  31. Yamada T, Matsumori A, Sasayama S (1994) Therapeutic effect of anti-tumor necrosis factor-alpha antibody on the murine model of viral myocarditis induced by encephalomyocarditis virus. Circulation 89:846–851

    PubMed  CAS  Google Scholar 

  32. Zaragoza C, Ocampo C, Saura M, Leppo M, Wei XQ, Quick R, Moncada S, Liew FY, Lowenstein CJ (1998) The role of inducible nitric oxide synthase in the host response to Coxsackievirus myocarditis. Proc Natl Acad Sci USA 95:2469–2474

    Article  PubMed  CAS  Google Scholar 

  33. Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Pedro A. Piedra, MD and Alan Jewel for their invaluable help with determination of viral titers and virus neutralization studies, and Feng Gao for technical assistance. This research was supported by grants HL58081, HL42250, HL073017 (to DLM) and HL083426 (to JGV) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Mann MD.

Additional information

C.-H. Huang and J.G. Vallejo have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CH., Vallejo, J.G., Kollias, G. et al. Role of the Innate Immune System in Acute Viral Myocarditis. Basic Res Cardiol 104, 228–237 (2009). https://doi.org/10.1007/s00395-008-0765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0765-5

Keywords

Navigation