Skip to main content
Log in

The angiotensin II type 1 receptor blocker valsartan attenuates graft vasculopathy

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

Transplant arteriosclerosis remains the major cause of graft failure after cardiac transplantation. Here, we investigated the effects of the angiotensin II type 1 receptor blocker valsartan on the development of transplant arteriosclerosis in a murine model of cardiac transplantation.

Methods

Hearts from DBA/2 (H–2d) mice were heterotopically transplanted into B10.D2 (H–2d) mice. Recipients were treated with oral administration of valsartan (10 mg/kg/day) or vehicle.

Results

Morphometrical analysis of the cardiac allografts harvested at 30 days revealed that valsartan significantly reduced the development of coronary atherosclerosis (intima/media ratio: 0.39 ± 0.05 vs. 0.66 ± 0.08, P < 0.01). At two weeks after transplantation, there was no significant difference between the two groups in expression of adhesion molecules and cytokines. Valsartan significantly reduced the number of peripheral mononuclear cells that differentiated into smooth muscle–like cells in the presence of basic fibroblast growth factor and platelet–derived growth factor BB (18.0 ± 1.5 vs. 30.3 ± 4.4 cells/HPF, P = 0.01).

Conclusions

These results suggest that angiotensin II plays a role in the pathogenesis of transplant arteriosclerosis and that blockade of angiotensin II type 1 receptor might be effective as a prophylactic therapy for transplant arteriosclerosis along with conventional immunosuppressive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billingham ME (1987) Cardiac transplant atherosclerosis. Transplant Proc 19:19–25

    CAS  PubMed  Google Scholar 

  2. Billingham ME, Cary NR, Hammond ME, Kemnitz J, Marboe C, McCallister HA, Snovar DC, Winters GL, Zerbe A (1990) A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant 9:587–593

    CAS  PubMed  Google Scholar 

  3. Caplice NM, Bunch TJ, Stalboerger PG, Wang S, Simper D, Miller DV, Russell SJ, Litzow MR, Edwards WD (2003) Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci USA 100:4754–4759

    CAS  PubMed  Google Scholar 

  4. Cohn JN, Tognoni G (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345:1667–1675

    Article  CAS  PubMed  Google Scholar 

  5. Furukawa Y, Matsumori A, Hirozane T, Sasayama S (1996) Angiotensin II receptor antagonist TCV-116 reduces graft coronary artery disease and preserves graft status in a murine model. A comparative study with captopril. Circulation 93:333–339

    CAS  PubMed  Google Scholar 

  6. Gibbons GH, Pratt RE, Dzau VJ (1992) Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest 90:456–461

    CAS  PubMed  Google Scholar 

  7. Glaser R, Lu MM, Narula N, Epstein JA (2002) Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation 106:17–19

    Article  PubMed  Google Scholar 

  8. Gross CM, Gerbaulet S, Quensel C, Kramer J, Mittelmeier HO, Luft FC, Dietz R (2002) Angiotensin II type 1 receptor expression in human coronary arteries with variable degrees of atherosclerosis. Basic Res Cardiol 97:327–333

    Article  CAS  PubMed  Google Scholar 

  9. Haznedaroglu IC, Ozturk MA (2003) Towards the understanding of the local hematopoietic bone marrow reninangiotensin system. Int J Biochem Cell Biol 35:867–880

    CAS  PubMed  Google Scholar 

  10. Haznedaroglu IC, Tuncer S, Gursoy M (1996) A local renin-angiotensin system in the bone marrow. Med Hypotheses 46:507–510

    Article  CAS  PubMed  Google Scholar 

  11. Hillebrands JL, Klatter FA, van Den Hurk BM, Popa ER, Nieuwenhuis P, Rozing J (2001) Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis. J Clin Invest 107:1411–1422

    CAS  PubMed  Google Scholar 

  12. Hirozane T, Matsumori A, Furukawa Y, Sasayama S (1995) Experimental graft coronary artery disease in a murine heterotopic cardiac transplant model. Circulation 91:386–392

    CAS  PubMed  Google Scholar 

  13. Holtz J, Goetz RM (1994) Vascular reninangiotensin- system, endothelial function and atherosclerosis? Basic Res Cardiol 89 (Suppl 1):71–86

    CAS  PubMed  Google Scholar 

  14. Hope S, Brecher P, Chobanian AV (1999) Comparison of the effects of AT1 receptor blockade and angiotensin converting enzyme inhibition on atherosclerosis. Am J Hypertens 12:28–34

    Article  CAS  PubMed  Google Scholar 

  15. Koglin J, Glysing-Jensen T, Raisanen- Sokolowski A, Russell ME (1998) Immune sources of transforming growth factor-beta1 reduce transplant arteriosclerosis: insight derived from a knockout mouse model. Circ Res 83:652–660

    CAS  PubMed  Google Scholar 

  16. Nahmod KA, Vermeulen ME, Raiden S, Salamone G, Gamberale R, Fernandez-Calotti P, Alvarez A, Nahmod V, Giordano M, Geffner JR (2003) Control of dendritic cell differentiation by angiotensin II. Faseb J 17:491–493

    CAS  PubMed  Google Scholar 

  17. Nickenig G, Bohm M (1998) Interaction between insulin and AT1 receptor. Relevance for hypertension and arteriosclerosis. Basic Res Cardiol 93 (Suppl 2):135– 139

    Article  CAS  PubMed  Google Scholar 

  18. Oubina MP, de Las Heras N, Vazquez-Perez S, Cediel E, Sanz-Rosa D, Ruilope LM, Cachofeiro V, Lahera V (2002) Valsartan improves fibrinolytic balance in atherosclerotic rabbits. J Hypertens 20:303–310

    Article  CAS  PubMed  Google Scholar 

  19. Paul LC, Davidoff A, Benediktsson H (1994) Efficacy of cyclosporine and angiotensin-converting enzyme inhibitor to inhibit cardiac graft atherosclerosis in the rat. Transplant Proc 26:2873–2874

    CAS  PubMed  Google Scholar 

  20. Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau JL, Kober L, Maggioni AP, Solomon SD, Swedberg K, Van de Werf F, White H, Leimberger JD, Henis M, Edwards S, Zelenkofske S, Sellers MA, Califf RM (2003) Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 349:1893–1906

    Article  CAS  PubMed  Google Scholar 

  21. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15

    Article  PubMed  Google Scholar 

  22. Richter MH, Richter HR, Olbrich HG, Mohr FW (2003) Two good reasons for an angiotensin-II type 1 receptor blockade with losartan after cardiac transplantation: reduction of incidence and severity of transplant vasculopathy. Transpl Int 16:26–32

    CAS  PubMed  Google Scholar 

  23. Rodgers KE, Xiong S, Steer R, diZerega GS (2000) Effect of angiotensin II on hematopoietic progenitor cell proliferation. Stem Cells 18:287–294

    Article  CAS  PubMed  Google Scholar 

  24. Russell ME, Adams DH, Wyner LR, Yamashita Y, Halnon NJ, Karnovsky MJ (1993) Early and persistent induction of monocyte chemoattractant protein 1 in rat cardiac allografts. Proc Natl Acad Sci USA 90:6086–6090

    CAS  PubMed  Google Scholar 

  25. Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M (2001) Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat Med 7:382–383

    Article  CAS  PubMed  Google Scholar 

  26. Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M (2001) Tranilast inhibits transplant-associated coronary arteriosclerosis in a murine model of cardiac transplantation. Eur J Pharmacol 433:163–168

    Article  CAS  PubMed  Google Scholar 

  27. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, Mitchell RN (2001) Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy. Nat Med 7:738–741

    Article  CAS  PubMed  Google Scholar 

  29. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM (2002) Smooth muscle progenitor cells in human blood. Circulation 106:1199–1204

    Article  CAS  PubMed  Google Scholar 

  30. Yamada H, Akishita M, Ito M, Tamura K, Daviet L, Lehtonen JY, Dzau VJ, Horiuchi M (1999) AT2 receptor and vascular smooth muscle cell differentiation in vascular development. Hypertension 33:1414–1419

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Sata MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T., Sata, M., Fukuda, D. et al. The angiotensin II type 1 receptor blocker valsartan attenuates graft vasculopathy. Basic Res Cardiol 100, 84–91 (2005). https://doi.org/10.1007/s00395-004-0489-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-004-0489-0

Key words

Navigation