Skip to main content

Advertisement

Log in

Amino acid-balanced diets improved DSS-induced colitis by alleviating inflammation and regulating gut microbiota

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Inflammatory bowel disease (IBD) is a multifactorial chronic disease of the gastrointestinal tract. Dietary intervention in the treatment of IBD has gradually attracted more attention. In this study, amino acid-balanced diets (AABD) based on grains were developed and their influences on the regulation of IBD were investigated.

Methods

Dextran sodium sulfate (DSS)-induced acute colitis mice model was employed to evaluate the effects of AABD. Pathological symptoms, intestinal inflammation, gut barrier proteins and gut microbiota were determined after AABD intake.

Results

It was shown that AABD alleviated the symptoms of colitis by reducing the histological scores of mice colon, suppressing the expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and upregulating the expression of tight junction proteins. Analysis of gut microbiota revealed that AABD altered the structure of gut microbiota by decreasing the abundance and richness of harmful bacteria induced by DSS (Escherichia-Shigella, Parasutterella, etc.) and increasing that of beneficial bacteria (Akkermansia, etc.). Correlation analysis indicated that the alterations of pro-inflammatory factors were related with the change of microbiota, suggesting that the inhibitory effects of AABD on inflammation might be due to its regulation gut microbiota.

Conclusion

The AABD could efficiently mitigate colitis, and this study indicated that AABD could be applied as a promising dietary regulation strategy of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lobionda S, Sittipo P, Kwon HY, Lee YK (2019) The role of gut microbiota in intestinal inflammation with respect to diet and extrinsic stressors. Microorganisms 7(8):271. https://doi.org/10.3390/microorganisms7080271

    Article  CAS  PubMed Central  Google Scholar 

  2. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, McIver LJ, Sauk JS, Wilson RG, Stevens BW, Scott JM, Pierce K, Deik AA, Bullock K, Imhann F, Porter JA, Zhernakova A, Fu J, Weersma RK, Wijmenga C, Clish CB, Vlamakis H, Huttenhower C, Xavier RJ (2019) Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 4(2):293–305. https://doi.org/10.1038/s41564-018-0306-4

    Article  CAS  PubMed  Google Scholar 

  3. de Souza HS, Fiocchi C (2016) Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 13(1):13–27. https://doi.org/10.1038/nrgastro.2015.186

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Zhong W, Wang W, Hu S, Yuan J, Zhang B, Hu T, Song G (2014) Ginsenoside metabolite compound K promotes recovery of dextran sulfate sodium-induced colitis and inhibits inflammatory responses by suppressing NF-kappaB activation. PLoS ONE 9(2):e87810. https://doi.org/10.1371/journal.pone.0087810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aggeletopoulou I, Konstantakis C, Assimakopoulos SF, Triantos C (2019) The role of the gut microbiota in the treatment of inflammatory bowel diseases. Microb Pathog 137:103774. https://doi.org/10.1016/j.micpath.2019.103774

    Article  CAS  PubMed  Google Scholar 

  6. Andujar I, Recio MC, Giner RM, Cienfuegos-Jovellanos E, Laghi S, Muguerza B, Rios JL (2011) Inhibition of ulcerative colitis in mice after oral administration of a polyphenol-enriched cocoa extract is mediated by the inhibition of STAT1 and STAT3 phosphorylation in colon cells. J Agric Food Chem 59(12):6474–6483. https://doi.org/10.1021/jf2008925

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Wang X, Chen Q, Luo L, Ma M, Xiao B, Zeng L (2020) Camellia sinensis and Litsea coreana ameliorate intestinal inflammation and modulate gut microbiota in dextran sulfate sodium-induced colitis mice. Mol Nutr Food Res 64(6):e1900943. https://doi.org/10.1002/mnfr.201900943

    Article  CAS  PubMed  Google Scholar 

  8. Kumar Singh A, Cabral C, Kumar R, Ganguly R, Kumar Rana H, Gupta A, Rosaria Lauro M, Carbone C, Reis F, Pandey AK (2019) Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 11(9):2216. https://doi.org/10.3390/nu11092216

    Article  CAS  PubMed Central  Google Scholar 

  9. Zou Q, Zhang X, Liu X, Li Y, Tan Q, Dan Q, Yuan T, Liu X, Liu RH, Liu Z (2020) Ficus carica polysaccharide attenuates DSS-induced ulcerative colitis in C57BL/6 mice. Food Funct 11(7):6666–6679. https://doi.org/10.1039/d0fo01162b

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Wang X, Hu CA (2017) Therapeutic potential of amino acids in inflammatory bowel disease. Nutrients.https://doi.org/10.3390/nu9090920

  11. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, Sigl V, Hanada T, Hanada R, Lipinski S, Wild B, Camargo SM, Singer D, Richter A, Kuba K, Fukamizu A, Schreiber S, Clevers H, Verrey F, Rosenstiel P, Penninger JM (2012) ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487(7408):477–481. https://doi.org/10.1038/nature11228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo D, Yang J, Ling F, Tu L, Li J, Chen Y, Zou K, Zhu L, Hou X (2020) Elemental diet enriched with amino acids alleviates mucosal inflammatory response and prevents colonic epithelial barrier dysfunction in mice with DSS-induced chronic colitis. J Immunol Res 2020:9430763. https://doi.org/10.1155/2020/9430763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Svolos H, Nichols Q, Ijaz, (2019) Treatment of active Crohn’s disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology 156(5):1354–1367. https://doi.org/10.1053/j.gastro.2018.12.002

    Article  PubMed  Google Scholar 

  14. Liu W, Zhang Y, Qiu B, Fan S, Ding H, Liu Z (2018) Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran Sulfate sodium in C57BL/6 mice. Sci Rep 8(1):14916. https://doi.org/10.1038/s41598-018-33092-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang B, Xu Y, Liu S, Lv H, Hu Y, Wang Y, Li Z, Wang J, Ji X, Ma H, Wang X, Wang S (2020) Dietary supplementation of foxtail millet ameliorates colitis-associated colorectal cancer in mice via activation of gut receptors and suppression of the STAT3 pathway. Nutrients 12(8):2367. https://doi.org/10.3390/nu12082367

    Article  CAS  PubMed Central  Google Scholar 

  16. Lee S-J, Lee JH, Lee H-H, Lee S, Kim SH, Chun T, Imm J-Y (2011) Effect of mung bean ethanol extract on pro-inflammtory cytokines in LPS stimulated macrophages. Food Sci Biotechnol 20(2):519–524. https://doi.org/10.1007/s10068-011-0072-z

    Article  CAS  Google Scholar 

  17. Liu B, Lin Q, Yang T, Zeng L, Shi L, Chen Y, Luo F (2015) Oat beta-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food Funct 6(11):3454–3463

    Article  CAS  Google Scholar 

  18. Chiara MM, Franco S, Marco P, Antonio G, Donato M (2020) Nutrition, IBD and gut microbiota: a review. Nutrients 12(4):944. https://doi.org/10.3390/nu12040944

    Article  CAS  Google Scholar 

  19. Wongkrasant P, Pongkorpsakol P, Ariyadamrongkwan J, Meesomboon R, Satitsri S, Pichyangkura R, Barrett KE, Muanprasat C (2020) A prebiotic fructo-oligosaccharide promotes tight junction assembly in intestinal epithelial cells via an AMPK-dependent pathway. Biomed Pharmacother 129:110415. https://doi.org/10.1016/j.biopha.2020.110415

    Article  CAS  PubMed  Google Scholar 

  20. Li C, Kowalski RJ, Li L, Ganjyal GM (2017) Extrusion expansion characteristics of samples of select varieties of whole yellow and green dry pea flours. Cereal Chem J 94(3):385–391. https://doi.org/10.1094/cchem-04-16-0079-r

    Article  CAS  Google Scholar 

  21. Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, Neurath MF (2017) Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc 12(7):1295–1309. https://doi.org/10.1038/nprot.2017.044

    Article  CAS  PubMed  Google Scholar 

  22. Sun Y, Ishikawa NF, Ogawa NO, Kawahata H, Takano Y, Ohkouchi N (2020) A method for stable carbon isotope measurement of underivatized individual amino acids by multi-dimensional high-performance liquid chromatography and elemental analyzer/isotope ratio mass spectrometry. Rapid Commun Mass Spectrometry 34(20):e8885. https://doi.org/10.1002/rcm.8885

    Article  CAS  Google Scholar 

  23. Alam MT, Amos GCA, Murphy ARJ, Murch S, Wellington EMH, Arasaradnam RP (2020) Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathog 12:1. https://doi.org/10.1186/s13099-019-0341-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martens EC, Neumann M, Desai MS (2018) Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol 16(8):457–470. https://doi.org/10.1038/s41579-018-0036-x

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H, Hu CA, Kovacs-Nolan J, Mine Y (2015) Bioactive dietary peptides and amino acids in inflammatory bowel disease. Amino Acids 47(10):2127–2141. https://doi.org/10.1007/s00726-014-1886-9

    Article  CAS  PubMed  Google Scholar 

  26. Nell S, Suerbaum S, Josenhans C (2010) The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 8(8):564–577. https://doi.org/10.1038/nrmicro2403

    Article  CAS  PubMed  Google Scholar 

  27. Vidal-Lletjos S, Beaumont M, Tome D, Benamouzig R, Blachier F, Lan A (2017) Dietary protein and amino acid supplementation in inflammatory bowel disease course: what impact on the colonic mucosa? Nutrients. https://doi.org/10.3390/nu9030310

  28. Elson CO, Cong Y (2012) Host-microbiota interactions in inflammatory bowel disease. Gut Microbes 3(4):332–344. https://doi.org/10.4161/gmic.20228

    Article  PubMed  PubMed Central  Google Scholar 

  29. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11(7):497–504. https://doi.org/10.1038/nrmicro3050

    Article  CAS  PubMed  Google Scholar 

  30. Rajca S, Grondin V, Louis E, Vernier-Massouille G, Grimaud JC, Bouhnik Y, Laharie D, Dupas JL, Pillant H, Picon L, Veyrac M, Flamant M, Savoye G, Jian R, Devos M, Paintaud G, Piver E, Allez M, Mary JY, Sokol H, Colombel JF, Seksik P (2014) Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm Bowel Dis 20(6):978–986. https://doi.org/10.1097/MIB.0000000000000036

    Article  PubMed  Google Scholar 

  31. Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503. https://doi.org/10.1016/j.tibtech.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  32. Caenepeel C, Sadat Seyed Tabib N, Vieira-Silva S, Vermeire S (2020) Review article: how the intestinal microbiota may reflect disease activity and influence therapeutic outcome in inflammatory bowel disease. Aliment Pharmacol Ther 52(9):1453–1468. https://doi.org/10.1111/apt.16096

    Article  PubMed  Google Scholar 

  33. Ankersen DV, Weimers P, Marker D, Johannesen T, Iversen S, Lilje B, Kristoffersen AB, Saboori S, Paridaens K, Skytt Andersen P, Burisch J, Munkholm P (2020) eHealth: Disease activity measures are related to the faecal gut microbiota in adult patients with ulcerative colitis. Scand J Gastroenterol 55(11):1291–1300. https://doi.org/10.1080/00365521.2020.1829031

    Article  CAS  PubMed  Google Scholar 

  34. Dong W, Huang K, Yan Y, Wan P (2020) Long-term consumption of 2-O-β-d-glucopyranosyl-l-ascorbic acid from the fruits of Lycium barbarum modulates gut microbiota in C57BL/6 mice. J Agric Food Chem 68(33):8863–8874

    Article  CAS  Google Scholar 

  35. Zhang T, Li P, Wu X, Lu G, Marcella C, Ji X, Ji G, Zhang F (2020) Alterations of Akkermansia muciniphila in the inflammatory bowel disease patients with washed microbiota transplantation. Appl Microbiol Biotechnol 104(23):10203–10215. https://doi.org/10.1007/s00253-020-10948-7

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Yang B, Ross RP, Jin Y, Stanton C, Zhao J, Zhang H, Chen W (2019) Orally administered CLA ameliorates DSS-induced colitis in mice via intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokine and gut microbiota modulation. J Agric Food Chem 67(48):13282–13298. https://doi.org/10.1021/acs.jafc.9b05744

    Article  CAS  PubMed  Google Scholar 

  37. Zhu X, Xiang S, Feng X, Wang H, Tian S, Xu Y, Shi L, Yang L, Li M, Shen Y (2018) Impact of cyanocobalamin and methylcobalamin on inflammatory bowel disease and the intestinal microbiota composition. J Agric Food Chem 67(3):916–926

    Article  Google Scholar 

  38. Haange SB, Jehmlich N, Hoffmann M, Weber K, Lehmann J, Von Bergen M, Slanina U (2019) Disease development is accompanied by changes in bacterial protein abundance and functions in a refined model of dextran sulfate sodium (DSS)-induced colitis. J Proteome Res 18(4):1774–1786

    Article  CAS  Google Scholar 

  39. Sun J, Chen H, Kan J, Gou Y, Liu J, Zhang X, Wu X, Tang S, Sun R, Qian C, Zhang N, Niu F, Jin C (2020) Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice. Int J Biol Macromol 153:708–722. https://doi.org/10.1016/j.ijbiomac.2020.03.053

    Article  CAS  PubMed  Google Scholar 

  40. Yang R, Shan S, Zhang C, Shi J, Li H, Li Z (2020) Inhibitory effects of bound polyphenol from foxtail millet bran on colitis-associated carcinogenesis by the restoration of gut microbiota in a mice model. J Agric Food Chem 68(11):3506–17

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [No. 31901609] and the Capacity-building project of local universities of SSTC [20060502100].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingwei Chen or Xiao Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Yang, S., Zhang, Y. et al. Amino acid-balanced diets improved DSS-induced colitis by alleviating inflammation and regulating gut microbiota. Eur J Nutr 61, 3531–3543 (2022). https://doi.org/10.1007/s00394-022-02906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02906-y

Keywords

Navigation