Skip to main content

Advertisement

Log in

Dietary patterns interact with chromosome 9p21 rs1333048 polymorphism on the risk of obesity and cardiovascular risk factors in apparently healthy Tehrani adults

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Gene-dietary patterns may contribute to determining body composition and related biochemical indices. The aim of this study was to evaluate interactions between rs1333048 polymorphism and major dietary patterns on body fat percentage, general and central obesity, and related biochemical measurements.

Methods

This cross-sectional study was conducted on 265 healthy Tehrani adults with mean age of 35 years (47.5% men, 52.5% women). Dietary patterns (DPs) were extracted by factor analysis. Bioelectrical impedance analysis was used for body analysis and rs1333048 was genotyped by the restriction fragment length polymorphism (PCR-RFLP) method.

Results

Three DPs were extracted: restricted refined grains DP, legumes DP and healthy DP. AA genotype compared to CC genotype had greater odds for general obesity before (OR 3.14; 95% CI 1.008–9.60, P = 0.045) and after (OR 3.11; 95% CI 1.008–9.60, P = 0.048) adjusting for potential confounders. Individuals with AA genotype were more likely to be centrally obese before (OR 2.09; 95% CI 1.006–4.35, P = 0.048) and after (OR 2.63; 95% CI 1.12–6.17, P = 0.026) controlling for potential confounders. Significant interactions were observed between Legumes DP and rs1333048 SNP on waist circumference (P = 0.047), body fat % (BFP) (P = 0.048), hs-Crp (P = 0.042), BMI (P = 0.073), WHtR (P = 0.063) and odds for general obesity (P = 0.051). Following this DP reduced all these items for individuals with CC genotype, whereas increased them for people who carry CA or AA genotypes.

Conclusions

The findings indicate that there are significant associations between AA genotype of rs1333048 SNP and general and central obesity, and significant interaction between alleles of this SNP and major dietary patterns on the odds of general obesity, BFP, waist circumference, BMI, WHtR and hs-Crp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ADIPOQ:

Adiponectin gene

ALT:

Alanine aminotransferase

APOB:

Apolipoprotein B

AST:

Aspartate aminotransferase

BFP:

Body fat percentage

BIA:

Bioelectrical impedance analysis

BMI:

Body mass index

bp:

Base pair

CAD:

Coronary artery disease

CDKN2B:

Cyclin-dependent kinase inhibitor 2B

DP:

Dietary pattern

CVD:

Cardiovascular disease

DNA:

Deoxyribonucleic acid

FBS:

Fasting blood sugar

FFM:

Fat-free mass

FFQ:

Food frequency questionnaire

FM:

Fat mass

FTO:

Fat mass and obesity associated gene

GLM:

General linear model

GWAS:

Genome-wide association studies

HDL:

High-density lipoprotein cholesterol

HDP:

Healthy dietary pattern

hs-Crp:

High sensitivity C-reactive protein

IPAQ:

International Physical Activity Questionnaire

LDL:

Low-density lipoprotein

LDLR:

Low-density lipoprotein receptor

LDP:

Legumes dietary pattern

MC4R:

Melanocortin 4 receptor

MET-h/wk:

Metabolic equivalent hours per week

MI:

Myocardial infarction

MYH7:

Myosin heavy chain 7

PCR:

Polymerase chain reaction

qPCR:

Quantitative polymerase chain reaction

RFLP:

Restriction fragment length polymorphism

RRGDP:

Restricted refined grains dietary pattern

SAT:

Subcutaneous adipose tissue

SNP:

Single nucleotide polymorphism

TC:

Total cholesterol

TG:

Triglyceride

VAT:

Visceral adipose tissue

WC:

Waist circumference

WHtR:

Waist-to-height ratio

WHO:

World Health Organization

References

  1. Franco LP, Morais CC, Cominetti C (2016) Normal-weight obesity syndrome: diagnosis, prevalence, and clinical implications. Nutr Rev 74(9):558–570. https://doi.org/10.1093/nutrit/nuw019

    Article  PubMed  Google Scholar 

  2. Mahan LK, Raymond JL (2016) Krause’s food and the nutrition care process, 14 edn. Elsevier, Oxford, p 388

    Google Scholar 

  3. Jensen MD (2008) Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 93(11 Suppl 1):S57–S63. https://doi.org/10.1210/jc.2008-1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y (2000) Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr 72(3):694–701

    Article  CAS  Google Scholar 

  5. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH (1999) The disease burden associated with overweight and obesity. JAMA 282(16):1523–1529

    Article  CAS  Google Scholar 

  6. WHO obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 18 July 2016

  7. Pang Q, Zhang JY, Qu K, Song SD, Liu SS, Liu C (2015) Central obesity induces a greater risk of hepatocellular carcinoma than general obesity. Hepatology 62(3):979–980. https://doi.org/10.1002/hep.27668

    Article  PubMed  Google Scholar 

  8. Andreasen CH, Andersen G (2009) Gene–environment interactions and obesity—further aspects of genomewide association studies. Nutrition (Burbank, Los Angeles County, Calif) 25(10):998–1003

    Article  CAS  Google Scholar 

  9. Garaulet M, Ordovas JM, Madrid JA (2010) The chronobiology, etiology and pathophysiology of obesity. Int J Obes 34(12):1667–1683

    Article  CAS  Google Scholar 

  10. Krajmalnik-Brown R, Ilhan Z-E, Kang D-W, DiBaise JK (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27(2):201–214

    Article  Google Scholar 

  11. Hinney A, Nguyen TT, Scherag A, Friedel S, Brönner G, Müller TD, Grallert H, Illig T, Wichmann H-E, Rief W (2007) Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One 2(12):e1361

    Article  Google Scholar 

  12. Hu E, Liang P, Spiegelman BM (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271(18):10697–10703

    Article  CAS  Google Scholar 

  13. Lönnqvist F, Arner P, Nordfors L, Schalling M (1995) Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat Med 1(9):950–953

    Article  Google Scholar 

  14. Mollahosseini M, Shab-Bidar S, Rahimi MH, Djafarian K (2017) Effect of whey protein supplementation on long and short term appetite: a meta-analysis of randomized controlled trials. Clin Nutr ESPEN 20:34

    Article  Google Scholar 

  15. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann H-E (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357(5):443–453

    Article  CAS  Google Scholar 

  16. Schunkert H, Götz A, Braund P, McGinnis R, Tregouet D-A, Mangino M, Linsel-Nitschke P, Cambien F, Hengstenberg C, Stark K (2008) Repeated replication and a prospective meta-analysis of the association between chromosome 9p21. 3 and coronary artery disease. Circulation 117(13):1675–1684

    Article  Google Scholar 

  17. Holdt LM, Teupser D (2012) Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler Thromb Vasc Biol 32(2):196–206

    Article  CAS  Google Scholar 

  18. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 447(7145):661–678

    Article  CAS  Google Scholar 

  19. McPherson R, Visel A, Zhu Y, May D, McPherson R, Pertsemlidis A, Kavaslar N, Helgadottir A, Thorleifsson G, Magnusson K (2010) Chromosome 9p21 and coronary artery disease. N Engl J Med 362(18):1736

    Article  CAS  Google Scholar 

  20. Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani NJ, Schunkert H (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41(3):334–341

    Article  CAS  Google Scholar 

  21. Svensson P-A, Wahlstrand B, Olsson M, Froguel P, Falchi M, Bergman RN, McTernan PG, Hedner T, Carlsson LM, Jacobson P (2014) CDKN2B expression and subcutaneous adipose tissue expandability: possible influence of the 9p21 atherosclerosis locus. Biochem Biophys Res Commun 446(4):1126–1131

    Article  CAS  Google Scholar 

  22. Hindy G, Ericson U, Hamrefors V, Drake I, Wirfält E, Melander O, Orho-Melander M (2014) The chromosome 9p21 variant interacts with vegetable and wine intake to influence the risk of cardiovascular disease: a population based cohort study. BMC Med Genet 15(1):1

    Article  Google Scholar 

  23. Do R, Xie C, Zhang X, Männistö S, Harald K, Islam S, Bailey SD, Rangarajan S, McQueen MJ, Diaz R (2011) The effect of chromosome 9p21 variants on cardiovascular disease may be modified by dietary intake: evidence from a case/control and a prospective study. PLoS Med 8(10):e1001106

    Article  CAS  Google Scholar 

  24. Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F (2010) Reliability and relative validity of an FFQ for nutrients in the Tehran Lipid and Glucose Study. Public Health Nutr 13(5):654–662

    Article  Google Scholar 

  25. Garnett S, Baur L, Cowell C (2008) Waist-to-height ratio: a simple option for determining excess central adiposity in young people. Int J Obes 32(6):1028–1030

    Article  CAS  Google Scholar 

  26. Esparragon FR, Companioni O, Bello MG, Rios NB, Perez JC (2012) Replication of relevant SNPs associated with cardiovascular disease susceptibility obtained from GWAs in a case–control study in a Canarian population. Dis Mark 32(4):231–239. https://doi.org/10.3233/dma-2011-0879

    Article  CAS  Google Scholar 

  27. Moghaddam MHB, Aghdam FB, Jafarabadi MA, Allahverdipour H, Nikookheslat SD, Safarpour S (2012) The Iranian Version of International Physical Activity Questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. World Appl Sci 18(8):1073–1080

    Google Scholar 

  28. Byun JS, Han YS, Lee SS (2010) The effects of yellow soybean, black soybean, and sword bean on lipid levels and oxidative stress in ovariectomized rats. Int J Vitamin Nutr Res 80(2):97–106. https://doi.org/10.1024/0300-9831/a000010

    Article  CAS  Google Scholar 

  29. Abbasi F, Kohli P, Reaven GM, Knowles JW (2016) Hypertriglyceridemia: a simple approach to identify insulin resistance and enhanced cardio-metabolic risk in patients with prediabetes. Diabetes Res Clin Pract 120:156–161. https://doi.org/10.1016/j.diabres.2016.07.024

    Article  CAS  PubMed  Google Scholar 

  30. Lofgren IE, Herron KL, West KL, Zern TL, Patalay M, Koo SI, Fernandez ML (2005) Carbohydrate intake is correlated with biomarkers for coronary heart disease in a population of overweight premenopausal women. J Nutr Biochem 16(4):245–250. https://doi.org/10.1016/j.jnutbio.2004.12.008

    Article  CAS  PubMed  Google Scholar 

  31. Martinez R, Lopez-Jurado M, Wanden-Berghe C, Sanz-Valero J, Porres JM, Kapravelou G (2016) Beneficial effects of legumes on parameters of the metabolic syndrome: a systematic review of trials in animal models. Br J Nutr 116(3):402–424. https://doi.org/10.1017/s0007114516001963

    Article  CAS  PubMed  Google Scholar 

  32. Srichamroen A, Thomson AB, Field CJ, Basu TK (2009) In vitro intestinal glucose uptake is inhibited by galactomannan from Canadian fenugreek seed (Trigonella foenum graecum L.) in genetically lean and obese rats. Nutr Res 29(1):49–54

    Article  CAS  Google Scholar 

  33. Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC (2007) Dietary patterns and markers of systemic inflammation among Iranian women. J Nutr 137(4):992–998

    Article  CAS  Google Scholar 

  34. Nanri H, Nakamura K, Hara M, Higaki Y, Imaizumi T, Taguchi N, Sakamoto T, Horita M, Shinchi K, Tanaka K (2011) Association between dietary pattern and serum C-reactive protein in Japanese men and women. J epidemiol Jpn Epidemiol Assoc 21(2):122–131

    Article  Google Scholar 

  35. Lee Y, Kang D, Lee SA (2014) Effect of dietary patterns on serum C-reactive protein level. Nutr Metab Cardiovasc Dis 24(9):1004–1011. https://doi.org/10.1016/j.numecd.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  36. Corley J, Kyle JA, Starr JM, McNeill G, Deary IJ (2015) Dietary factors and biomarkers of systemic inflammation in older people: the Lothian Birth Cohort 1936. Br J Nutr 114(7):1088–1098. https://doi.org/10.1017/s000711451500210x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neale EP, Batterham MJ, Tapsell LC (2016) Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: a meta-analysis. Nutr Res (New York NY) 36(5):391–401. https://doi.org/10.1016/j.nutres.2016.02.009

    Article  CAS  Google Scholar 

  38. Brighenti F, Valtuena S, Pellegrini N, Ardigo D, Del Rio D, Salvatore S, Piatti P, Serafini M, Zavaroni I (2005) Total antioxidant capacity of the diet is inversely and independently related to plasma concentration of high-sensitivity C-reactive protein in adult Italian subjects. Br J Nutr 93(05):619–625

    Article  CAS  Google Scholar 

  39. Esmaillzadeh A, Azadbakht L (2008) Major dietary patterns in relation to general obesity and central adiposity among Iranian women. J Nutr 138(2):358–363

    Article  CAS  Google Scholar 

  40. Yu C, Shi Z, Lv J, Du H, Qi L, Guo Y, Bian Z, Chang L, Tang X, Jiang Q, Mu H, Pan D, Chen J, Chen Z, Li L (2015) Major dietary patterns in relation to general and central obesity among Chinese adults. Nutrients 7(7):5834–5849. https://doi.org/10.3390/nu7075253

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gaesser GA (2007) Carbohydrate quantity and quality in relation to body mass index. J Am Diet Assoc 107(10):1768–1780

    Article  Google Scholar 

  42. Feliciano Pereira P, das Gracas de Almeida C, Alfenas Rde C (2014) Glycemic index role on visceral obesity, subclinical inflammation and associated chronic diseases. Nutr Hosp 30(2):237–243. https://doi.org/10.3305/nh.2014.30.2.7506

    Article  PubMed  Google Scholar 

  43. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Jonasdottir A, Sigurdsson A, Baker A, Palsson A (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316(5830):1491–1493

    Article  CAS  Google Scholar 

  44. Paynter NP, Chasman DI, Buring JE, Shiffman D, Cook NR, Ridker PM (2009) Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21. 3. Ann Intern Med 150(2):65–72

    Article  Google Scholar 

  45. Karvanen J, Silander K, Kee F, Tiret L, Salomaa V, Kuulasmaa K, Wiklund PG, Virtamo J, Saarela O, Perret C (2009) The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genet Epidemiol 33(3):237–246

    Article  Google Scholar 

  46. Bayoglu B, Cakmak HA, Yuksel H, Can G, Karadag B, Ulutin T, Vural VA, Cengiz M (2013) Chromosome 9p21 rs10757278 polymorphism is associated with the risk of metabolic syndrome. Mol Cell Biochem 379(1–2):77–85. https://doi.org/10.1007/s11010-013-1629-3

    Article  CAS  PubMed  Google Scholar 

  47. Kathiresan S, Srivastava D (2012) Genetics of human cardiovascular disease. Cell 148(6):1242–1257

    Article  CAS  Google Scholar 

  48. Choquet H, Meyre D (2011) Genetics of obesity: what have we learned? Curr Genom 12(3):169–179

    Article  CAS  Google Scholar 

  49. Paracchini V, Pedotti P, Taioli E (2005) Genetics of leptin and obesity: a HuGE review. Am J Epidemiol 162(2):101–114

    Article  Google Scholar 

  50. Menaa F, Menaa A, Menaa B, Tréton J (2013) Trans-fatty acids, dangerous bonds for health? A background review paper of their use, consumption, health implications and regulation in France. Eur J Nutr 52(4):1289–1302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to all participants who took part in the study. This study was supported by a Grant from Tehran University of Medical Sciences (Grant ID: 93-04-161-27722).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhila Maghbooli or Khadijeh Mirzaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollahosseini, M., Rahimi, M.H., Yekaninejad, M.S. et al. Dietary patterns interact with chromosome 9p21 rs1333048 polymorphism on the risk of obesity and cardiovascular risk factors in apparently healthy Tehrani adults. Eur J Nutr 59, 35–43 (2020). https://doi.org/10.1007/s00394-018-1872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1872-1

Keywords

Navigation