Skip to main content

Advertisement

Log in

Put “gender glasses” on the effects of phenolic compounds on cardiovascular function and diseases

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Introduction

The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD.

Results

This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota.

Conclusions

Although there is a large gap between the knowledge of the sex differences in the phenolic compounds’ activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Legato MJ, Johnson PA, Manson JE (2016) Consideration of sex differences in medicine to improve health care and patient outcomes. JAMA 316(18):1865–1866

    Article  PubMed  Google Scholar 

  2. Agabio R, Pisanu C, Gessa GL, Franconi F (2016) Sex differences in alcohol use disorder. Curr Med Chem 24:2661–2670

    Google Scholar 

  3. Regitz-Zagrosek V, Oertelt-Prigione S, Prescott E, Franconi F, Gerdts E, Foryst-Ludwig A, Maas AH, Kautzky-Willer A, Knappe-Wegner D, Kintscher U, Ladwig KH, Schenck-Gustafsson K, Stangl V (2016) Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur Heart J 37(1):24–34

    Article  CAS  PubMed  Google Scholar 

  4. Kander MC, Cui Y, Liu Z (2016) Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med:1024–1032

    Article  PubMed  PubMed Central  Google Scholar 

  5. Franconi F, Campesi I (2014) Sex and gender influences on pharmacological response: an overview. Expert Rev Clin Pharmacol 7(4):469–485

    Article  CAS  PubMed  Google Scholar 

  6. Marino M, Masella R, Bulzomi P, Campesi I, Malorni W, Franconi F (2011) Nutrition and human health from a sex-gender perspective. Mol Asp Med 32(1):1–70

    Article  CAS  Google Scholar 

  7. Lemire J, Alhasawi A, Appanna VP, Tharmalingam S, Appanna VD (2017) Metabolic defense against oxidative stress: the road less travelled-so far. J Appl Microbiol 173:798–809

    Article  CAS  Google Scholar 

  8. Malorni W, Campesi I, Straface E, Vella S, Franconi F (2007) Redox features of the cell: a gender perspective. Antioxid Redox Signal 9(11):1779–1801

    Article  CAS  PubMed  Google Scholar 

  9. Franconi F, Rosano G, Basili S, Montella A, Campesi I (2017) Human cells involved in atherosclerosis have a sex. Int J Cardiol 228:983–1001

    Article  PubMed  Google Scholar 

  10. Egea J, Fabregat I, Frapart YM, Ghezzi P, Gorlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertran E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Forstermann U, Giniatullin R, Giricz Z, Gorbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustin P, Hillion M, Huang J, Ilikay S, Jansen-Durr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kracun D, Krause KH, Kren V, Krieg T, Laranjinha J, Lazou A, Li H, Martinez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milkovic L, Miranda-Vizuete A, Mojovic M, Monsalve M, Mouthuy PA, Mulvey J, Munzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavicevic A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Anton N, Rodriguez-Manas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schroder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanic V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentova K, Van Breusegem F, Varisli L, Veal EA, Yalcin AS, Yelisyeyeva O, Zarkovic N, Zatloukalova M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt H, Di Lisa F, Daiber A (2017) European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 13:94–162

    Article  CAS  Google Scholar 

  11. Ritchie RH, Drummond GR, Sobey CG, De Silva TM, Kemp-Harper BK (2017) The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res 116:57–69

    Article  CAS  PubMed  Google Scholar 

  12. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421

    Article  CAS  PubMed  Google Scholar 

  13. Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36(10):1199–1207

    Article  CAS  PubMed  Google Scholar 

  14. Myung SK, Ju W, Cho B, Oh SW, Park SM, Koo BK, Park BJ (2013) Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 346:f10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361(9374):2017–2023

    Article  CAS  PubMed  Google Scholar 

  16. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D, Crozier A (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88(10):1803–1853

    Article  CAS  PubMed  Google Scholar 

  18. Cueva C, Gil-Sanchez I, Ayuda-Duran B, Gonzalez-Manzano S, Gonzalez-Paramas AM, Santos-Buelga C, Bartolome B, Moreno-Arribas MV (2017) An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules 22(1):99

    Article  PubMed Central  CAS  Google Scholar 

  19. Virgili F, Marino M (2008) Regulation of cellular signals from nutritional molecules: a specific role for phytochemicals, beyond antioxidant activity. Free Radic Biol Med 45(9):1205–1216

    Article  CAS  PubMed  Google Scholar 

  20. Pandjaitan N, Hettiarachchy N, Ju ZY, Crandall P, Sneller C, Dombek D (2000) Evaluation of genistin and genistein contents in soybean varieties and soy protein concentrate prepared with three basic methods. J Food Sci 65:399–402

    Article  CAS  Google Scholar 

  21. Marcoccia D, Pellegrini M, Fiocchetti M, Lorenzetti S, Marino M (2017) Food components and contaminants as (anti)androgenic molecules. Genes Nutr 12:6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Woodside JV, Young IS, McKinley MC (2013) Fruit and vegetable intake and risk of cardiovascular disease. Proc Nutr Soc 72(4):399–406

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 349:g4490

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A (2015) A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients 7(7):5177–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anthony MS, Clarkson TB, Bullock BC, Wagner JD (1997) Soy protein versus soy phytoestrogens in the prevention of diet-induced coronary artery atherosclerosis of male cynomolgus monkeys. Arterioscler Thromb Vasc Biol 17(11):2524–2531

    Article  CAS  PubMed  Google Scholar 

  26. Chong MF, Macdonald R, Lovegrove JA (2010) Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr 104(Suppl 3):S28–S39

    Article  CAS  PubMed  Google Scholar 

  27. Alissa EM, Ferns GA (2017) Dietary fruits and vegetables and cardiovascular diseases risk. Crit Rev Food Sci Nutr 57(9):1950–1962

    CAS  PubMed  Google Scholar 

  28. Guo Y, Bruno RS (2015) Endogenous and exogenous mediators of quercetin bioavailability. J Nutr Biochem 26(3):201–210

    Article  PubMed  CAS  Google Scholar 

  29. González-Sarrías A, Combet E, Pinto P, Mena P, Dall’Asta M, Garcia-Aloy M, Rodríguez-Mateos A, Gibney ER, Dumont J, Massaro M, Sánchez-Meca J, Morand C, García-Conesa MT (2017) A systematic review and meta-analysis of the effects of flavanol-containing tea, cocoa and apple products on body composition and blood lipids: exploring the factors responsible for variability in their efficacy. Nutrients 9:746

    Article  PubMed Central  CAS  Google Scholar 

  30. Campesi I, Romani A, Marino M, Franconi F (2014) Phenolic compounds from a sex-gender perspective. In: Romani A, Lattanzio S, Quideau S (eds) Recent advances in polyphenol research. Wiley, Chichester, pp 327–339

    Google Scholar 

  31. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl 50(3):586–621

    Article  CAS  PubMed  Google Scholar 

  32. Galluzzo P, Marino M (2006) Nutritional flavonoids impact on nuclear and extranuclear estrogen receptor activities. Genes Nutr 1(3–4):161–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walle T, Browning AM, Steed LL, Reed SG, Walle UK (2005) Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J Nutr 135(1):48–52

    Article  CAS  PubMed  Google Scholar 

  34. Marin L, Miguelez EM, Villar CJ, Lombo F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gee JM, DuPont MS, Day AJ, Plumb GW, Williamson G, Johnson IT (2000) Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J Nutr 130(11):2765–2771

    Article  CAS  PubMed  Google Scholar 

  36. Franconi F, Brunelleschi S, Steardo L, Cuomo V (2007) Gender differences in drug responses. Pharmacol Res 55(2):81–95

    Article  CAS  PubMed  Google Scholar 

  37. Franconi F, Chessa MS,ES, Rosano R G (2011) Pharmacokinetics and pharmacodynamics: the role of sex and gender. In: Oertelt-Prigione S, Regitz-Zagrosek V (eds) Sex and gender aspects in clinical medicine. Springer, London, pp 183–194

    Google Scholar 

  38. Gerbal-Chaloin S, Iankova I, Maurel P, Daujat-Chavanieu M (2013) Nuclear receptors in the cross-talk of drug metabolism and inflammation. Drug Metab Rev 45(1):122–144

    Article  CAS  PubMed  Google Scholar 

  39. Petrick JS, Klaassen CD (2007) Importance of hepatic induction of constitutive androstane receptor and other transcription factors that regulate xenobiotic metabolism and transport. Drug Metab Dispos 35(10):1806–1815

    Article  CAS  PubMed  Google Scholar 

  40. Lamba V, Lamba J, Yasuda K, Strom S, Davila J, Hancock ML, Fackenthal JD, Rogan PK, Ring B, Wrighton SA, Schuetz EG (2003) Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J Pharmacol Exp Ther 307(3):906–922

    Article  CAS  PubMed  Google Scholar 

  41. Ekstrand B, Rasmussen MK, Woll F, Zlabek V, Zamaratskaia G (2015) In vitro gender-dependent inhibition of porcine cytochrome p450 activity by selected flavonoids and phenolic acids. Biomed Res Int 2015:387918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ostlund J, Zlabek V, Zamaratskaia G (2017) In vitro inhibition of human CYP2E1 and CYP3A by quercetin and myricetin in hepatic microsomes is not gender dependent. Toxicology 381:10–18

    Article  PubMed  CAS  Google Scholar 

  43. Li Y, Ross-Viola JS, Shay NF, Moore DD, Ricketts ML (2009) Human CYP3A4 and murine Cyp3A11 are regulated by equol and genistein via the pregnane X receptor in a species-specific manner. J Nutr 139(5):898–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wahajuddin SN, Taneja I, Arora S, Raju KS, Siddiqui N (2013) Disposition of pharmacologically active dietary isoflavones in biological systems. Curr Drug Metab 14(4):369–380

    Article  CAS  PubMed  Google Scholar 

  45. Zhou S, Gao Y, Jiang W, Huang M, Xu A, Paxton JW (2003) Interactions of herbs with cytochrome P450. Drug Metab Rev 35(1):35–98

    Article  CAS  PubMed  Google Scholar 

  46. Soukup ST, Helppi J, Muller DR, Zierau O, Watzl B, Vollmer G, Diel P, Bub A, Kulling SE (2016) Phase II metabolism of the soy isoflavones genistein and daidzein in humans, rats and mice: a cross-species and sex comparison. Arch Toxicol 90(6):1335–1347

    Article  CAS  PubMed  Google Scholar 

  47. Strassburg CP, Kalthoff S, Ehmer U (2008) Variability and function of family 1 uridine-5′-diphosphate glucuronosyltransferases (UGT1A). Crit Rev Clin Lab Sci 45(6):485–530

    Article  CAS  PubMed  Google Scholar 

  48. Saracino MR, Bigler J, Schwarz Y, Chang JL, Li S, Li L, White E, Potter JD, Lampe JW (2009) Citrus fruit intake is associated with lower serum bilirubin concentration among women with the UGT1A1*28 polymorphism. J Nutr 139(3):555–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Navarro SL, Peterson S, Chen C, Makar KW, Schwarz Y, King IB, Li SS, Li L, Kestin M, Lampe JW (2009) Cruciferous vegetable feeding alters UGT1A1 activity: diet- and genotype-dependent changes in serum bilirubin in a controlled feeding trial. Cancer Prev Res (Phila) 2(4):345–352

    Article  CAS  PubMed Central  Google Scholar 

  50. Saracino MR, Lampe JW (2007) Phytochemical regulation of UDP-glucuronosyltransferases: implications for cancer prevention. Nutr Cancer 59(2):121–141

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Klein K, Sugathan A, Nassery N, Dombkowski A, Zanger UM, Waxman DJ (2011) Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease. PLoS One 6(8):e23506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matthews J, Wihlen B, Thomsen J, Gustafsson JA (2005) Aryl hydrocarbon receptor-mediated transcription: ligand-dependent recruitment of estrogen receptor alpha to 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol Cell Biol 25(13):5317–5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Monostory K, Pascussi JM, Kobori L, Dvorak Z (2009) Hormonal regulation of CYP1A expression. Drug Metab Rev 41(4):547–572

    Article  CAS  PubMed  Google Scholar 

  54. Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, Yanagisawa J, Fujii-Kuriyama Y, Kato S (2003) Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423(6939):545–550

    Article  CAS  PubMed  Google Scholar 

  55. Runge-Morris M, Kocarek TA, Falany CN (2013) Regulation of the cytosolic sulfotransferases by nuclear receptors. Drug Metab Rev 45(1):15–33

    Article  CAS  PubMed  Google Scholar 

  56. Alnouti Y, Klaassen CD (2011) Mechanisms of gender-specific regulation of mouse sulfotransferases (Sults). Xenobiotica 41(3):187–197

    Article  CAS  PubMed  Google Scholar 

  57. Yang CH, Tang L, Lv C, Ye L, Xia BJ, Hu M, Liu ZQ (2011) Sulfation of selected mono-hydroxyflavones by sulfotransferases in vitro: a species and gender comparison. J Pharm Pharmacol 63(7):967–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang P, Heber D, Henning SM (2012) Quercetin increased bioavailability and decreased methylation of green tea polyphenols in vitro and in vivo. Food Funct 3(6):635–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    Article  CAS  PubMed  Google Scholar 

  60. Hong YJ, Mitchell AE (2004) Metabolic profiling of flavonol metabolites in human urine by liquid chromatography and tandem mass spectrometry. J Agric Food Chem 52(22):6794–6801

    Article  CAS  PubMed  Google Scholar 

  61. Mitchell AE, Burns SA, Rudolf JL (2007) Isozyme- and gender-specific induction of glutathione S-transferases by flavonoids. Arch Toxicol 81(11):777–784

    Article  CAS  PubMed  Google Scholar 

  62. Igarashi T, Satoh T, Ueno K, Kitagawa H (1983) Sex-related difference in the hepatic glutathione level and related enzyme activities in rat. J Biochem 93(1):33–36

    Article  CAS  PubMed  Google Scholar 

  63. Donovan JL, Manach C, Faulks RM, Kroon PA (2006) Absorption and metabolism of dietary plant secondary metabolites. In: Crozier A, Clifford MN, Ashihara H (eds) Plant secondary metabolites: occurrence, structure and role in the human diet. Wiley Online Library, Hoboken, pp 303–351

    Chapter  Google Scholar 

  64. Wiseman H, Casey K, Bowey EA, Duffy R, Davies M, Rowland IR, Lloyd AS, Murray A, Thompson R, Clarke DB (2004) Influence of 10 wk of soy consumption on plasma concentrations and excretion of isoflavonoids and on gut microflora metabolism in healthy adults. Am J Clin Nutr 80(3):692–699

    Article  CAS  PubMed  Google Scholar 

  65. Lu YF, Jin T, Xu Y, Zhang D, Wu Q, Zhang YK, Liu J (2013) Sex differences in the circadian variation of cytochrome p450 genes and corresponding nuclear receptors in mouse liver. Chronobiol Int 30(9):1135–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kelly GE, Nelson C, Waring MA, Joannou GE, Reeder AY (1993) Metabolites of dietary (soya) isoflavones in human urine. Clin Chim Acta 223(1–2):9–22

    Article  CAS  PubMed  Google Scholar 

  67. Gradolatto A, Basly JP, Berges R, Teyssier C, Chagnon MC, Siess MH, Canivenc-Lavier MC (2005) Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab Dispos 33(1):49–54

    Article  CAS  PubMed  Google Scholar 

  68. Wruss J, Lanzerstorfer P, Huemer S, Himmelsbach M, Mangge H, Hoglinger O, Weghuber D, Weghuber J (2015) Differences in pharmacokinetics of apple polyphenols after standardized oral consumption of unprocessed apple juice. Nutr J 14:32–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lu LJ, Anderson KE (1998) Sex and long-term soy diets affect the metabolism and excretion of soy isoflavones in humans. Am J Clin Nutr 68(6 Suppl):1500S–1504S

    Article  CAS  PubMed  Google Scholar 

  70. Faughnan MS, Hawdon A, Ah-Singh E, Brown J, Millward DJ, Cassidy A (2004) Urinary isoflavone kinetics: the effect of age, gender, food matrix and chemical composition. Br J Nutr 91(4):567–574

    Article  CAS  PubMed  Google Scholar 

  71. Milenkovic D, Morand C, Cassidy A, Konic-Ristic A, Tomas-Barberan F, Ordovas JM, Kroon P, De Caterina R, Rodriguez-Mateos A (2017) Interindividual variability in biomarkers of cardiometabolic health after consumption of major plant-food bioactive compounds and the determinants involved. Adv Nutr 8(4):558–570

    PubMed  PubMed Central  Google Scholar 

  72. Manach C, Milenkovic D, Van de Wiele T, Rodriguez-Mateos A, de Roos B, Garcia-Conesa MT, Landberg R, Gibney ER, Heinonen M, Tomas-Barberan F, Morand C (2017) Addressing the inter-individual variation in response to consumption of plant food bioactives: towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Mol Nutr Food Res 61:(6)

    Article  CAS  Google Scholar 

  73. Sureda A, Sanches Silva A, Sanchez-Machado DI, Lopez-Cervantes J, Daglia M, Nabavi SF, Nabavi SM (2017) Hypotensive effects of genistein: from chemistry to medicine. Chem Biol Interact 268:37–46

    Article  CAS  PubMed  Google Scholar 

  74. Serban MC, Sahebkar A, Zanchetti A, Mikhailidis DP, Howard G, Antal D, Andrica F, Ahmed A, Aronow WS, Muntner P, Lip GY, Graham I, Wong N, Rysz J, Banach M (2016) Effects of quercetin on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 5(7):e00273

    Article  Google Scholar 

  75. Al-Nakkash L, Martin JB, Petty D, Lynch SM, Hamrick C, Lucy D, Robinson J, Peterson A, Rubin LJ, Broderick TL (2012) Dietary genistein induces sex-dependent effects on murine body weight, serum profiles, and vascular function of thoracic aortae. Gend Med 9(5):295–308

    Article  PubMed  Google Scholar 

  76. Peroni RN, Abramoff T, Neuman I, Podesta EJ, Adler-Graschinsky E (2012) Phytoestrogens enhance the vascular actions of the endocannabinoid anandamide in mesenteric beds of female rats. Int J Hypertens 2012:647856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kane MO, Anselm E, Rattmann YD, Auger C, Schini-Kerth VB (2009) Role of gender and estrogen receptors in the rat aorta endothelium-dependent relaxation to red wine polyphenols. Vascul Pharmacol 51(2–3):140–146

    Article  CAS  PubMed  Google Scholar 

  78. Finking G, Wohlfrom M, Lenz C, Wolkenhauer M, Eberle C, Hanke H (1999) The phytoestrogens Genistein and Daidzein, and 17 beta-estradiol inhibit development of neointima in aortas from male and female rabbits in vitro after injury. Coron Artery Dis 10(8):607–615

    Article  CAS  PubMed  Google Scholar 

  79. Menezes R, Rodriguez-Mateos A, Kaltsatou A, Gonzalez-Sarrias A, Greyling A, Giannaki C, Andres-Lacueva C, Milenkovic D, Dumont ER, Schar M, Garcia-Aloy M, Palma-Duran SA, Ruskovska T, Maksimova V, Combet E, Pinto P (2017) Impact of flavonols on cardiometabolic biomarkers: a meta-analysis of randomized controlled human trials to explore the role of inter-individual variability. Nutrients 9(2):117

    Article  PubMed Central  CAS  Google Scholar 

  80. Macready AL, George TW, Chong MF, Alimbetov DS, Jin Y, Vidal A, Spencer JP, Kennedy OB, Tuohy KM, Minihane AM, Gordon MH, Lovegrove JA (2014) Flavonoid-rich fruit and vegetables improve microvascular reactivity and inflammatory status in men at risk of cardiovascular disease—FLAVURS: a randomized controlled trial. Am J Clin Nutr 99(3):479–489

    Article  CAS  PubMed  Google Scholar 

  81. Mennen LI, Sapinho D, de Bree A, Arnault N, Bertrais S, Galan P, Hercberg S (2004) Consumption of foods rich in flavonoids is related to a decreased cardiovascular risk in apparently healthy French women. J Nutr 134(4):923–926

    Article  CAS  PubMed  Google Scholar 

  82. Setchell KD, Clerici C (2010) Equol: pharmacokinetics and biological actions. J Nutr 140(7):1363S–1368S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Setchell KD, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J Nutr 132(12):3577–3584

    Article  CAS  PubMed  Google Scholar 

  84. Hazim S, Curtis PJ, Schar MY, Ostertag LM, Kay CD, Minihane AM, Cassidy A (2016) Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: a double-blind randomized controlled trial. Am J Clin Nutr 103(3):694–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lippi G, Montagnana M, Franchini M, Favaloro EJ, Targher G (2008) The paradoxical relationship between serum uric acid and cardiovascular disease. Clin Chim Acta 392(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  86. Cheatham CL, Vazquez-Vidal I, Medlin A, Voruganti VS (2016) Blueberry consumption affects serum uric acid concentrations in older adults in a sex-specific manner. Antioxidants (Basel) 5 (4)

    Article  PubMed Central  CAS  Google Scholar 

  87. Ostertag LM, Kroon PA, Wood S, Horgan GW, Cienfuegos-Jovellanos E, Saha S, Duthie GG, de Roos B (2013) Flavan-3-ol-enriched dark chocolate and white chocolate improve acute measures of platelet function in a gender-specific way—a randomized-controlled human intervention trial. Mol Nutr Food Res 57(2):191–202

    Article  CAS  PubMed  Google Scholar 

  88. Egert S, Bosy-Westphal A, Seiberl J, Kurbitz C, Settler U, Plachta-Danielzik S, Wagner AE, Frank J, Schrezenmeir J, Rimbach G, Wolffram S, Muller MJ (2009) Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 102(7):1065–1074

    Article  CAS  PubMed  Google Scholar 

  89. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137(11):2405–2411

    Article  CAS  PubMed  Google Scholar 

  90. Zahedi M, Ghiasvand R, Feizi A, Asgari G, Darvish L (2013) Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: a double-blind randomized controlled clinical trial. Int J Prev Med 4(7):777–785

    PubMed  PubMed Central  Google Scholar 

  91. Alonso A, Martinez-Gonzalez MA (2004) Olive oil consumption and reduced incidence of hypertension: the SUN study. Lipids 39(12):1233–1238

    Article  CAS  PubMed  Google Scholar 

  92. Nagata C, Shimizu H, Takami R, Hayashi M, Takeda N, Yasuda K (2003) Association of blood pressure with intake of soy products and other food groups in Japanese men and women. Prev Med 36(6):692–697

    Article  PubMed  Google Scholar 

  93. Rivas M, Garay RP, Escanero JF, Cia P Jr, Cia P, Alda JO (2002) Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension. J Nutr 132(7):1900–1902

    Article  CAS  PubMed  Google Scholar 

  94. Teede HJ, Dalais FS, Kotsopoulos D, Liang YL, Davis S, McGrath BP (2001) Dietary soy has both beneficial and potentially adverse cardiovascular effects: a placebo-controlled study in men and postmenopausal women. J Clin Endocrinol Metab 86(7):3053–3060

    CAS  PubMed  Google Scholar 

  95. Liang YL, Teede H, Dalais F, McGrath BP (2006) The effects of phytoestrogen on blood pressure and lipids in healthy volunteers. Zhonghua Xin Xue Guan Bing Za Zhi 34(8):726–729

    CAS  PubMed  Google Scholar 

  96. Loke WM, Hodgson JM, Proudfoot JM, McKinley AJ, Puddey IB, Croft KD (2008) Pure dietary flavonoids quercetin and (−)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 88(4):1018–1025

    Article  CAS  PubMed  Google Scholar 

  97. Ho SC, Woo JL, Leung SS, Sham AL, Lam TH, Janus ED (2000) Intake of soy products is associated with better plasma lipid profiles in the Hong Kong Chinese population. J Nutr 130(10):2590–2593

    Article  CAS  PubMed  Google Scholar 

  98. Li SH, Liu XX, Bai YY, Wang XJ, Sun K, Chen JZ, Hui RT (2010) Effect of oral isoflavone supplementation on vascular endothelial function in postmenopausal women: a meta-analysis of randomized placebo-controlled trials. Am J Clin Nutr 91(2):480–486

    Article  CAS  PubMed  Google Scholar 

  99. Beavers DP, Beavers KM, Miller M, Stamey J, Messina MJ (2012) Exposure to isoflavone-containing soy products and endothelial function: a Bayesian meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 22(3):182–191

    Article  CAS  PubMed  Google Scholar 

  100. Liew R, Stagg MA, Chan J, Collins P, MacLeod KT (2004) Gender determines the acute actions of genistein on intracellular calcium regulation in the guinea-pig heart. Cardiovasc Res 61(1):66–76

    Article  CAS  PubMed  Google Scholar 

  101. Olsson MC, Palmer BM, Leinwand LA, Moore RL (2001) Gender and aging in a transgenic mouse model of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 280(3):H1136-1144

    Article  Google Scholar 

  102. Vikstrom KL, Factor SM, Leinwand LA (1996) Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol Med 2(5):556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Haines CD, Harvey PA, Leinwand LA (2012) Estrogens mediate cardiac hypertrophy in a stimulus-dependent manner. Endocrinology 153(9):4480–4490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Haines CD, Harvey PA, Luczak ED, Barthel KK, Konhilas JP, Watson PA, Stauffer BL, Leinwand LA (2012) Estrogenic compounds are not always cardioprotective and can be lethal in males with genetic heart disease. Endocrinology 153(9):4470–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stauffer BL, Konhilas JP, Luczak ED, Leinwand LA (2006) Soy diet worsens heart disease in mice. J Clin Investig 116(1):209–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Konhilas JP, Chen H, Luczak E, McKee LA, Regan J, Watson PA, Stauffer BL, Khalpey ZI, McKinsey TA, Horn T, LaFleur B, Leinwand LA (2015) Diet and sex modify exercise and cardiac adaptation in the mouse. Am J Physiol Heart Circ Physiol 308(2):H135-145

    Article  CAS  Google Scholar 

  107. Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M (2006) Soy protein, isoflavones, and cardiovascular health: a summary of a statement for professionals from the american heart association nutrition committee. Arterioscler Thromb Vasc Biol 26(8):1689–1692

    Article  CAS  PubMed  Google Scholar 

  108. van der Schouw YT, Kreijkamp-Kaspers S, Peeters PH, Keinan-Boker L, Rimm EB, Grobbee DE (2005) Prospective study on usual dietary phytoestrogen intake and cardiovascular disease risk in Western women. Circulation 111(4):465–471

    Article  PubMed  CAS  Google Scholar 

  109. Maskarinec G, Aylward AG, Erber E, Takata Y, Kolonel LN (2008) Soy intake is related to a lower body mass index in adult women. Eur J Nutr 47(3):138–144

    Article  PubMed  PubMed Central  Google Scholar 

  110. Anderson JW, Johnstone BM, Cook-Newell ME (1995) Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 333(5):276–282

    Article  CAS  PubMed  Google Scholar 

  111. Welty FK, Lee KS, Lew NS, Zhou JR (2007) Effect of soy nuts on blood pressure and lipid levels in hypertensive, prehypertensive, and normotensive postmenopausal women. Arch Intern Med 167(10):1060–1067

    Article  CAS  PubMed  Google Scholar 

  112. Nagata C, Takatsuka N, Kurisu Y, Shimizu H (1998) Decreased serum total cholesterol concentration is associated with high intake of soy products in Japanese men and women. J Nutr 128(2):209–213

    Article  CAS  PubMed  Google Scholar 

  113. Cheng SY, Shaw NS, Tsai KS, Chen CY (2004) The hypoglycemic effects of soy isoflavones on postmenopausal women. J Women’s Health (Larchmt) 13(10):1080–1086

    Article  Google Scholar 

  114. Azadbakht L, Kimiagar M, Mehrabi Y, Esmaillzadeh A, Padyab M, Hu FB, Willett WC (2007) Soy inclusion in the diet improves features of the metabolic syndrome: a randomized crossover study in postmenopausal women. Am J Clin Nutr 85(3):735–741

    Article  CAS  PubMed  Google Scholar 

  115. Zamora-Ros R, Jimenez C, Cleries R, Agudo A, Sanchez MJ, Sanchez-Cantalejo E, Molina-Montes E, Navarro C, Chirlaque MD, Maria Huerta J, Amiano P, Redondo ML, Barricarte A, Gonzalez CA (2013) Dietary flavonoid and lignan intake and mortality in a Spanish cohort. Epidemiology 24(5):726–733

    Article  PubMed  Google Scholar 

  116. Zhang X, Shu XO, Gao YT, Yang G, Li Q, Li H, Jin F, Zheng W (2003) Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J Nutr 133(9):2874–2878

    Article  CAS  PubMed  Google Scholar 

  117. Yu D, Zhang X, Xiang YB, Yang G, Li H, Fazio S, Linton M, Cai Q, Zheng W, Gao YT, Shu XO (2014) Association of soy food intake with risk and biomarkers of coronary heart disease in Chinese men. Int J Cardiol 172(2):e285–e287

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kokubo Y, Iso H, Ishihara J, Okada K, Inoue M, Tsugane S (2007) Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan Public Health Center-based (JPHC) study cohort I. Circulation 116(22):2553–2562

    Article  CAS  PubMed  Google Scholar 

  119. Nagata C, Takatsuka N, Shimizu H (2002) Soy and fish oil intake and mortality in a Japanese community. Am J Epidemiol 156(9):824–831

    Article  PubMed  Google Scholar 

  120. Talaei M, Koh WP, van Dam RM, Yuan JM, Pan A (2014) Dietary soy intake is not associated with risk of cardiovascular disease mortality in Singapore Chinese adults. J Nutr 144(6):921–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lou D, Li Y, Yan G, Bu J, Wang H (2016) Soy consumption with risk of coronary heart disease and stroke: a meta-analysis of observational studies. Neuroepidemiology 46(4):242–252

    Article  PubMed  Google Scholar 

  122. Hollman PC, Geelen A, Kromhout D (2010) Dietary flavonol intake may lower stroke risk in men and women. J Nutr 140(3):600–604

    Article  CAS  PubMed  Google Scholar 

  123. Giergiel M, Lopucki M, Stachowicz N, Kankofer M (2012) The influence of age and gender on antioxidant enzyme activities in humans and laboratory animals. Aging Clin Exp Res 24(6):561–569

    CAS  PubMed  Google Scholar 

  124. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638

    Article  CAS  PubMed  Google Scholar 

  125. Fairweather D (2014) Sex differences in inflammation during atherosclerosis. Clin Med Insights Cardiol 8(Suppl 3):49–59

    PubMed  Google Scholar 

  126. Barp J, Araujo AS, Fernandes TR, Rigatto KV, Llesuy S, Bello-Klein A, Singal P (2002) Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz J Med Biol Res 35(9):1075–1081

    Article  CAS  PubMed  Google Scholar 

  127. Morales RC, Bahnson ES, Havelka GE, Cantu-Medellin N, Kelley EE, Kibbe MR (2015) Sex-based differential regulation of oxidative stress in the vasculature by nitric oxide. Redox Biol 4:226–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Matarrese P, Colasanti T, Ascione B, Margutti P, Franconi F, Alessandri C, Conti F, Riccieri V, Rosano G, Ortona E, Malorni W (2011) Gender disparity in susceptibility to oxidative stress and apoptosis induced by autoantibodies specific to RLIP76 in vascular cells. Antioxid Redox Signal 15(11):2825–2836

    Article  CAS  PubMed  Google Scholar 

  129. Straface E, Vona R, Gambardella L, Ascione B, Marino M, Bulzomi P, Canu S, Coinu R, Rosano G, Malorni W, Franconi F (2009) Cell sex determines anoikis resistance in vascular smooth muscle cells. FEBS Lett 583(21):3448–3454

    Article  CAS  PubMed  Google Scholar 

  130. Malorni W, Straface E, Matarrese P, Ascione B, Coinu R, Canu S, Galluzzo P, Marino M, Franconi F (2008) Redox state and gender differences in vascular smooth muscle cells. FEBS Lett 582(5):635–642

    Article  CAS  PubMed  Google Scholar 

  131. Chen Y, Ji LL, Liu TY, Wang ZT (2011) Evaluation of gender-related differences in various oxidative stress enzymes in mice. Chin J Physiol 54(6):385–390

    CAS  PubMed  Google Scholar 

  132. Kayali R, Cakatay U, Uzun H, Genc H (2007) Gender difference as regards myocardial protein oxidation in aged rats: male rats have increased oxidative protein damage. Biogerontology 8(6):653–661

    Article  CAS  PubMed  Google Scholar 

  133. Campesi I, Straface E, Occhioni S, Montella A, Franconi F (2013) Protein oxidation seems to be linked to constitutive autophagy: a sex study. Life Sci 93(4):145–152

    Article  CAS  PubMed  Google Scholar 

  134. Horvathova M, Zitnanova I, Kralovicova Z, Balis P, Puzserova A, Muchova J, Kluknavsky M, Durackova Z, Bernatova I (2016) Sex differences in the blood antioxidant defense system in juvenile rats with various genetic predispositions to hypertension. Hypertens Res 39(2):64–69

    Article  CAS  PubMed  Google Scholar 

  135. Fortepiani LA, Reckelhoff JF (2005) Role of oxidative stress in the sex differences in blood pressure in spontaneously hypertensive rats. J Hypertens 23(4):801–805

    Article  CAS  PubMed  Google Scholar 

  136. Miller AA, Drummond GR, Mast AE, Schmidt HH, Sobey CG (2007) Effect of gender on NADPH-oxidase activity, expression, and function in the cerebral circulation: role of estrogen. Stroke 38(7):2142–2149

    Article  CAS  PubMed  Google Scholar 

  137. Zhang R, Thor D, Han X, Anderson L, Rahimian R (2012) Sex differences in mesenteric endothelial function of streptozotocin-induced diabetic rats: a shift in the relative importance of EDRFs. Am J Physiol Heart Circ Physiol 303(10):H1183-1198

    Article  CAS  Google Scholar 

  138. Ali SS, Xiong C, Lucero J, Behrens MM, Dugan LL, Quick KL (2006) Gender differences in free radical homeostasis during aging: shorter-lived female C57BL6 mice have increased oxidative stress. Aging Cell 5(6):565–574

    Article  CAS  PubMed  Google Scholar 

  139. Dai G, He L, Chou N, Wan YJ (2006) Acetaminophen metabolism does not contribute to gender difference in its hepatotoxicity in mouse. Toxicol Sci 92(1):33–41

    Article  CAS  PubMed  Google Scholar 

  140. Masubuchi Y, Nakayama J, Watanabe Y (2011) Sex difference in susceptibility to acetaminophen hepatotoxicity is reversed by buthionine sulfoximine. Toxicology 287(1–3):54–60

    Article  CAS  PubMed  Google Scholar 

  141. Pellegrini GG, Cregor M, McAndrews K, Morales CC, McCabe LD, McCabe GP, Peacock M, Burr D, Weaver C, Bellido T (2017) Nrf2 regulates mass accrual and the antioxidant endogenous response in bone differently depending on the sex and age. PLoS One 12(2):e0171161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Yu J, Zhao Y, Li B, Sun L, Huo H (2012) 17beta-estradiol regulates the expression of antioxidant enzymes in myocardial cells by increasing Nrf2 translocation. J Biochem Mol Toxicol 26(7):264–269

    Article  CAS  PubMed  Google Scholar 

  143. Addis R, Campesi I, Fois M, Capobianco G, Dessole S, Fenu G, Montella A, Cattaneo MG, Vicentini LM, Franconi F (2014) Human umbilical endothelial cells (HUVECs) have a sex: characterisation of the phenotype of male and female cells. Biol Sex Differ 5(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Ide T, Tsutsui H, Ohashi N, Hayashidani S, Suematsu N, Tsuchihashi M, Tamai H, Takeshita A (2002) Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol 22(3):438–442

    Article  CAS  PubMed  Google Scholar 

  145. Brunelli E, Domanico F, La Russa D, Pellegrino D (2014) Sex differences in oxidative stress biomarkers. Curr Drug Targets 15(8):811–815

    Article  CAS  PubMed  Google Scholar 

  146. Tothova L, Ostatnikova D, Sebekova K, Celec P, Hodosy J (2013) Sex differences of oxidative stress markers in young healthy subjects are marker-specific in plasma but not in saliva. Ann Hum Biol 40(2):175–180

    Article  PubMed  Google Scholar 

  147. Campesi I, Occhioni S, Tonolo G, Cherchi S, Basili S, Carru C, Zinellu A, Franconi F (2016) Ageing/menopausal status in healthy women and ageing in healthy men differently affect cardiometabolic parameters. Int J Med Sci 13(2):124–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hollman PC, Cassidy A, Comte B, Heinonen M, Richelle M, Richling E, Serafini M, Scalbert A, Sies H, Vidry S (2011) The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J Nutr 141(5):989S–1009S

    Article  CAS  PubMed  Google Scholar 

  149. Halliwell B (2007) Dietary polyphenols: good, bad, or indifferent for your health? Cardiovasc Res 73(2):341–347

    Article  CAS  PubMed  Google Scholar 

  150. Ambrosini G, Romani A, Scazzocchio B, Varì R, Vona R, Campesi I, Banelli L, Straface E, Masella R, Malorni W, Franconi F (2012) Sex-gender influences the expression of antioxidant/detoxifying enzyme induced by extra rirgin olive oil extracts in rat vascular smooth muscle cells. In: XXVIth international conference on polyphenols 22–26 July 2012, Florence Italy 2012, pp 437–438

  151. Kamper EF, Chatzigeorgiou A, Tsimpoukidi O, Kamper M, Dalla C, Pitychoutis PM, Papadopoulou-Daifoti Z (2009) Sex differences in oxidant/antioxidant balance under a chronic mild stress regime. Physiol Behav 98(1–2):215–222

    Article  CAS  PubMed  Google Scholar 

  152. Escande A, Pillon A, Servant N, Cravedi JP, Larrea F, Muhn P, Nicolas JC, Cavailles V, Balaguer P (2006) Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta. Biochem Pharmacol 71(10):1459–1469

    Article  CAS  PubMed  Google Scholar 

  153. Mueller SO, Simon S, Chae K, Metzler M, Korach KS (2004) Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol Sci 80(1):14–25

    Article  CAS  PubMed  Google Scholar 

  154. Acconcia F, Fiocchetti M, Marino M (2016) Xenoestrogen regulation of ERalpha/ERbeta balance in hormone-associated cancers. Mol Cell Endocrinol 457:3–12

    Article  PubMed  CAS  Google Scholar 

  155. Pellegrini M, Bulzomi P, Lecis M, Leone S, Campesi I, Franconi F, Marino M (2014) Endocrine disruptors differently influence estrogen receptor beta and androgen receptor in male and female rat VSMC. J Cell Physiol 229(8):1061–1068

    Article  CAS  PubMed  Google Scholar 

  156. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Igor Costea P, Kultima JR, Li J, Jorgensen T, Levenez F, Dore J, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tang WH, Hazen SL (2014) The contributory role of gut microbiota in cardiovascular disease. J Clin Investig 124(10):4204–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, Wagner MA, Bennett BJ, Li L, DiDonato JA, Lusis AJ, Hazen SL (2015) Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem 290(9):5647–5660

    Article  CAS  PubMed  Google Scholar 

  159. Aron-Wisnewsky J, Clement K (2016) The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 12(3):169–181

    Article  CAS  PubMed  Google Scholar 

  160. Burrows MP, Volchkov P, Kobayashi KS, Chervonsky AV (2015) Microbiota regulates type 1 diabetes through Toll-like receptors. Proc Natl Acad Sci USA 112(32):9973–9977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rieder R, Wisniewski PJ, Alderman BL, Campbell SC (2017) Microbes and mental health: a review. Brain Behav Immun 66:9–17

    Article  CAS  PubMed  Google Scholar 

  162. Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14(1):20–32

    Article  CAS  PubMed  Google Scholar 

  163. Salazar N, Arboleya S, Valdes L, Stanton C, Ross P, Ruiz L, Gueimonde M, de CG Los Reyes-Gavilan (2014) The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Front Genet 5:406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Kaplan H, Hill K, Lancaster J, Hurtado AM (2000) A theory of human life history evolution: diet, intelligence, and longevity. Evol Anthropol 9:156–185

    Article  Google Scholar 

  165. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, Lusis AJ, Knight R, Caporaso JG, Svanback R (2014) Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun 5:4500

    Article  CAS  PubMed  Google Scholar 

  166. Marino M, Masella R, Bulzomi P, Campesi I, Malorni W, Franconi F (2010) Nutrition and human health from a sex-gender perspective. Mol Asp Med 32(1):1–70

    Article  CAS  Google Scholar 

  167. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339(6123):1084–1088

    Article  CAS  PubMed  Google Scholar 

  168. Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB, Ahn J (2015) Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One 10(4):e0124599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M, Wei H, Chen Y, Lu H, Zuo J, Su M, Qiu Y, Jia W, Xiao C, Smith LM, Yang S, Holmes E, Tang H, Zhao G, Nicholson JK, Li L, Zhao L (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105(6):2117–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli MC, Clavel T, Koebnick C, Zunft HJ, Dore J, Blaut M (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72(2):1027–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Haro C, Rangel-Zuniga OA, Alcala-Diaz JF, Gomez-Delgado F, Perez-Martinez P, Delgado-Lista J, Quintana-Navarro GM, Landa BB, Navas-Cortes JA, Tena-Sempere M, Clemente JC, Lopez-Miranda J, Perez-Jimenez F, Camargo A (2016) Intestinal microbiota is influenced by gender and body mass index. PLoS One 11(5):e0154090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, Gonzalez A, Werner JJ, Angenent LT, Knight R, Backhed F, Isolauri E, Salminen S, Ley RE (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Espin JC, Gonzalez-Sarrias A, Tomas-Barberan FA (2017) The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol 139:82–93

    Article  CAS  PubMed  Google Scholar 

  175. Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8(2):78–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Frankenfeld CL, Atkinson C, Wahala K, Lampe JW (2014) Obesity prevalence in relation to gut microbial environments capable of producing equol or O-desmethylangolensin from the isoflavone daidzein. Eur J Clin Nutr 68(4):526–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nakatsu CH, Armstrong A, Clavijo AP, Martin BR, Barnes S, Weaver CM (2014) Fecal bacterial community changes associated with isoflavone metabolites in postmenopausal women after soy bar consumption. PLoS One 9(10):e108924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Usui T, Tochiya M, Sasaki Y, Muranaka K, Yamakage H, Himeno A, Shimatsu A, Inaguma A, Ueno T, Uchiyama S, Satoh-Asahara N (2013) Effects of natural S-equol supplements on overweight or obesity and metabolic syndrome in the Japanese, based on sex and equol status. Clin Endocrinol (Oxf) 78(3):365–372

    Article  CAS  Google Scholar 

  179. Ridlon JM, Ikegawa S, Alves JM, Zhou B, Kobayashi A, Iida T, Mitamura K, Tanabe G, Serrano M, De Guzman A, Cooper P, Buck GA, Hylemon PB (2013) Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J Lipid Res 54(9):2437–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Balakrishnan B, Thorstensen EB, Ponnampalam AP, Mitchell MD (2010) Transplacental transfer and biotransformation of genistein in human placenta. Placenta 31(6):506–511

    Article  CAS  PubMed  Google Scholar 

  181. Foster WG, Chan S, Platt L, Hughes CL Jr (2002) Detection of phytoestrogens in samples of second trimester human amniotic fluid. Toxicol Lett 129(3):199–205

    Article  CAS  PubMed  Google Scholar 

  182. Soucy NV, Parkinson HD, Sochaski MA, Borghoff SJ (2006) Kinetics of genistein and its conjugated metabolites in pregnant Sprague-Dawley rats following single and repeated genistein administration. Toxicol Sci 90(1):230–240

    Article  CAS  PubMed  Google Scholar 

  183. Jarrell J, Foster WG, Kinniburgh DW (2012) Phytoestrogens in human pregnancy. Obstet Gynecol Int 2012:850313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Diaz-Castro J, Pulido-Moran M, Moreno-Fernandez J, Kajarabille N, de Paco C, Garrido-Sanchez M, Prados S, Ochoa JJ (2016) Gender specific differences in oxidative stress and inflammatory signaling in healthy term neonates and their mothers. Pediatr Res 80(4):595–601

    Article  CAS  PubMed  Google Scholar 

  185. Hanson MA, Gluckman PD (2008) Developmental origins of health and disease: new insights. Basic Clin Pharmacol Toxicol 102(2):90–93

    Article  CAS  PubMed  Google Scholar 

  186. McCarver G, Bhatia J, Chambers C, Clarke R, Etzel R, Foster W, Hoyer P, Leeder JS, Peters JM, Rissman E, Rybak M, Sherman C, Toppari J, Turner K (2011) NTP-CERHR expert panel report on the developmental toxicity of soy infant formula. Birth Defects Res B Dev Reprod Toxicol 92(5):421–468

    Article  CAS  PubMed  Google Scholar 

  187. Setchell KD, Zimmer-Nechemias L, Cai J, Heubi JE (1997) Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 350(9070):23–27

    Article  CAS  PubMed  Google Scholar 

  188. Strakovsky RS, Lezmi S, Flaws JA, Schantz SL, Pan YX, Helferich WG (2014) Genistein exposure during the early postnatal period favors the development of obesity in female, but not male rats. Toxicol Sci 138(1):161–174

    Article  CAS  PubMed  Google Scholar 

  189. Jefferson WN, Williams CJ (2011) Circulating levels of genistein in the neonate, apart from dose and route, predict future adverse female reproductive outcomes. Reprod Toxicol 31(3):272–279

    Article  CAS  PubMed  Google Scholar 

  190. Jefferson WN, Padilla-Banks E, Goulding EH, Lao SP, Newbold RR, Williams CJ (2009) Neonatal exposure to genistein disrupts ability of female mouse reproductive tract to support preimplantation embryo development and implantation. Biol Reprod 80(3):425–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Newbold RR, Banks EP, Bullock B, Jefferson WN (2001) Uterine adenocarcinoma in mice treated neonatally with genistein. Cancer Res 61(11):4325–4328

    CAS  PubMed  Google Scholar 

  192. Santti R, Makela S, Strauss L, Korkman J, Kostian ML (1998) Phytoestrogens: potential endocrine disruptors in males. Toxicol Ind Health 14(1–2):223–237

    Article  CAS  PubMed  Google Scholar 

  193. Bulzomi P, Marino M (2011) Environmental endocrine disruptors: does a sex-related susceptibility exist? Front Biosci 16:2478–2498

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially funded by a Grant of INAIL “Bando BRIC 2016”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Campesi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campesi, I., Marino, M., Cipolletti, M. et al. Put “gender glasses” on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 57, 2677–2691 (2018). https://doi.org/10.1007/s00394-018-1695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1695-0

Keywords

Navigation