Skip to main content

Advertisement

Log in

Autophagic effects of Hibiscus sabdariffa leaf polyphenols and epicatechin gallate (ECG) against oxidized LDL-induced injury of human endothelial cells

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Oxidized low-density lipoprotein (ox-LDL) contributes to the pathogenesis of atherosclerosis by promoting vascular endothelial cell injury. Hibiscus sabdariffa leaf polyphenols (HLP), rich in flavonoids, have been shown to possess antioxidant and antiatherosclerotic activities. In this study, we examined the protective role of HLP and its main compound (−)-epicatechin gallate (ECG) in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL in vitro.

Methods

In a model of ox-LDL-impaired HUVECs, assessments of cell viability, cytotoxicity, cell proliferation, apoptosis, and autophagy were detected. To highlight the mechanisms of the antiapoptotic effects of HLP and ECG, the expressions of molecular proteins were measured by Western blotting, real-time PCR, and so on.

Results

HLP or ECG improved the survival of HUVECs from ox-LDL-induced viability loss. In addition, HLP or ECG showed potential in reducing ox-LDL-dependent apoptosis. Next, the ox-LDL-induced formation of acidic vesicular organelles and upregulation of the autophagy-related genes were increased by HLP or ECG. The HLP-triggered autophagic flux was further confirmed by increasing the LC3-II level under the pretreatment of an autophagy inhibitor chloroquine. Molecular data indicated the autophagic effect of HLP or ECG might be mediated via class III PI3K/Beclin-1 and PTEN/class I PI3K/Akt cascade signaling, as demonstrated by the usage of a class III PI3K inhibitor 3-methyladenine (3-MA) and a PTEN inhibitor SF1670.

Conclusions

Our data imply that ECG-enriched HLP upregulates the autophagic pathway, which in turn led to reduce ox-LDL-induced HUVECs injury and apoptosis and provide a new mechanism for its antiatherosclerotic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LDL:

Low-density lipoprotein

ox-LDL:

Oxidized LDL

HUVECs:

Human umbilical vein endothelial cells

LC3:

Microtubule-associated protein 1 light chain 3

Atg:

Autophagy-related genes

mTOR:

Mammalian target of rapamycin

PKB:

Protein kinase B

PI3K:

Phosphatidylinositol 3-kinase

HLP:

Hibiscus sabdariffa leaf polyphenols

ECG:

(−)-Epicatechin gallate

CQ:

Chloroquine

3-MA:

3-Methyladenine

TBARS:

Thiobarbituric acid-reactive substances

MTT:

3-(4,5-Dimethylthiazol-zyl)-2,5-diphenyltetrazolium bromide

LDH:

Lactate dehydrogenase

BrdU:

Bromodeoxyuridine

DAPI:

4,6-Diamidino-2-phenylindole

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TBS:

Tris-buffered saline

ECL:

Enhanced chemiluminescence

AO:

Acridine orange

PTEN:

Phosphatase and tensin homolog

References

  1. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  Google Scholar 

  2. Xie Y, You SJ, Zhang YL, Han Q, Cao YJ, Xu XS, Yang YP, Li J, Liu CF (2011) Protective role of autophagy in AGE-induced early injury of human vascular endothelial cells. Mol Med Rep 4:459–464

    CAS  Google Scholar 

  3. Zhang YL, Cao YJ, Zhang X, Liu HH, Tong T, Xiao GD, Yang YP, Liu CF (2010) The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochem Biophys Res Commun 394:377–382

    Article  CAS  Google Scholar 

  4. Durand E, Scoazec A, Lafont A, Boddaert J, Al Hajzen A, Addad F, Mirshahi M, Desnos M, Tedgui A, Mallat Z (2004) In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109:2503–2506

    Article  CAS  Google Scholar 

  5. Ulrich-Merzenich G, Zeitler H, Vetter H, Bhonde RR (2007) Protective effects of taurine on endothelial cells impaired by high glucose and oxidized low density lipoproteins. Eur J Nutr 46:431–438

    Article  CAS  Google Scholar 

  6. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  Google Scholar 

  7. Martinet W, De Meyer GR (2009) Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res 104:304–317

    Article  CAS  Google Scholar 

  8. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for selfeating. Cell Death Differ 12:1542–1552

    Article  CAS  Google Scholar 

  9. Sachdewa A, Nigam R, Khemani LD (2001) Hypoglycemic effect of Hibiscus rosa sinensis L. leaf extract in glucose and streptozotocin induced hyperglycemic rats. Indian J Exp Biol 39:284–286

    CAS  Google Scholar 

  10. Ochani PC, D’Mello P (2009) Antioxidant and antihyperlipidemic activity of Hibiscus sabdariffa Linn. leaves and calyces extracts in rats. Indian J Exp Biol 47:276–282

    Google Scholar 

  11. Lin HH, Chan KC, Sheu JY, Hsuan SW, Wang CJ, Chen JH (2012) Hibiscus sabdariffa leaf induces apoptosis of human prostate cancer cells in vitro and in vivo. Food Chem 132:880–891

    Article  CAS  Google Scholar 

  12. Gosain S, Ircchiaya R, Sharma PC, Thareja S, Kalra A, Deep A, Bhardwaj TR (2010) Hypolipidemic effect of ethanolic extract from the leaves of Hibiscus sabdariffa L. in hyperlipidemic rats. Acta Pol Pharm 67:179–184

    Google Scholar 

  13. Chen JH, Wang CJ, Wang CP, Sheu JY, Lin CL, Lin HH (2013) Hibiscus sabdariffa leaf polyphenolic extract inhibits LDL oxidation and foam cell formation involving up-regulation of LXRα/ABCA1 pathway. Food Chem 141:397–406

    Article  CAS  Google Scholar 

  14. Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, Coleman R, Elis A, Aviram M (1997) Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 17:2744–2752

    Article  CAS  Google Scholar 

  15. Miura Y, Chiba T, Tomita I, Koizumi H, Miura S, Umegaki K, Hara Y, Ikeda M, Tomita T (2001) Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J Nutr 131:27–32

    CAS  Google Scholar 

  16. Miura Y, Chiba T, Miura S, Tomita I, Umegaki K, Ikeda M, Tomita T (2000) Green tea polyphenols (flavan 3-ols) prevent oxidative modification of low density lipoproteins: an ex vivo study in humans. J Nutr Biochem 11:216–222

    Article  CAS  Google Scholar 

  17. Havel RJ, Eder HA, Bragdon JH (1995) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1353

    Article  Google Scholar 

  18. Das DK, Sato M, Ray PS, Maulik G, Engelman RM, Bertelli AA, Bertelli A (1999) Cardioprotection of red wine: role of polyphenolic antioxidants. Drugs Exp Clin Res 25:115–120

    CAS  Google Scholar 

  19. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48:589–601

    CAS  Google Scholar 

  20. Madhok BM, Yeluri S, Perry SL, Hughes TA, Jayne DG (2010) Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br J Cancer 102:1746–1752

    Article  CAS  Google Scholar 

  21. Chao CL, Chang NC, Weng CS, Lee KR, Kao ST, Hsu JC, Ho FM (2011) Grape seed extract ameliorates tumor necrosis factor-α-induced inflammatory status of human umbilical vein endothelial cells. Eur J Nutr 50:401–409

    Article  CAS  Google Scholar 

  22. Shvets E, Fass E, Elazar Z (2008) Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy 4:621–628

    Article  CAS  Google Scholar 

  23. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  Google Scholar 

  24. Chen ML, Yi L, Jin X, Liang XY, Zhou Y, Zhang T, Xie Q, Zhou X, Chang H, Fu YJ, Zhu JD, Zhang QY, Mi MT (2013) Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 9:2033–2045

    Article  CAS  Google Scholar 

  25. Shiu SW, Wong Y, Tan KC (2012) Effect of advanced glycation end products on lectin-like oxidized low density lipoprotein receptor-1 expression in endothelial cells. J Atheroscler Thromb 19:1083–1092

    Article  CAS  Google Scholar 

  26. Caro LH, Plomp PJ, Wolvetang EJ, Kerkhof C, Meijer AJ (1988) 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur J Biochem 175:325–329

    Article  CAS  Google Scholar 

  27. Li Y, Prasad A, Jia Y, Roy SG, Loison F, Mondal S, Kocjan P, Silberstein LE, Ding S, Luo HR, Silberstein LE, Ding S, Luo HR (2011) Pretreatment with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitor SF1670 augments the efficacy of granulocyte transfusion in a clinically relevant mouse model. Blood 117:6702–6713

    Article  CAS  Google Scholar 

  28. Gaziano JM, Manson J, Buring JE, Hennekens CH (1992) Dietary antioxidants and cardiovascular disease. Ann N Y Acad Sci 669:249–259

    Article  CAS  Google Scholar 

  29. Yu YM, Wang ZH, Liu CH, Chen CS (2007) Ellagic acid inhibits IL-1beta-induced cell adhesion molecule expression in human umbilical vein endothelial cells. Br J Nutr 97:692–698

    Article  CAS  Google Scholar 

  30. Ludwig A, Lorenz M, Grimbo N, Steinle F, Meiners S, Bartsch C, Stangl K, Baumann G, Stangl V (2004) The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells. Biochem Biophys Res Commun 316:659–665

    Article  CAS  Google Scholar 

  31. Widlansky ME, Hamburg NM, Anter E, Holbrook M, Kahn DF, Elliott JG, Keane JF Jr, Vita JA (2007) Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J Am Coll Nutr 26:95–102

    Article  CAS  Google Scholar 

  32. Kawai Y, Tanaka H, Murota K, Naito M, Terao J (2008) (−)-Epicatechin gallate accumulates in foamy macrophages in human atherosclerotic aorta: implication in the anti-atherosclerotic actions of tea catechins. Biochem Biophys Res Commun 374:527–532

    Article  CAS  Google Scholar 

  33. Zhen J, Villani TS, Guo Y, Qi Y, Chin K, Pan MH, Ho CT, Simon JE, Wu Q (2016) Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chem 190:673–680

    Article  CAS  Google Scholar 

  34. Kim M, Choi SY, Lee P, Hur J (2015) Neochlorogenic acid inhibits lipopolysaccharide-induced activation and pro-inflammatory responses in BV2 microglial cells. Neurochem Res 40:1792–1798

    Article  CAS  Google Scholar 

  35. Wu C, Luan H, Zhang X, Wang S, Zhang X, Sun X, Guo P (2014) Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages. PLoS One 9:e95452

    Article  Google Scholar 

  36. Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY, Kooistra T (2011) Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 218:44–52

    Article  CAS  Google Scholar 

  37. Kong L, Luo C, Li X, Zhou Y, He H (2013) The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits. Lipids Health Dis 12:115

    Article  CAS  Google Scholar 

  38. Steinberg D, Lewis A (1997) Conner memorial lecture. Oxidative modification of LDL and atherogenesis. Circulation 95:1062–1071

    Article  CAS  Google Scholar 

  39. Chen J, Mehta JL, Haider N, Zhang X, Narula J, Li D (2004) Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res 94:370–376

    Article  CAS  Google Scholar 

  40. Park HJ, Zhang Y, Georgescu SP, Johnson KL, Kong D, Galper JB (2006) Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev 2:93–102

    Article  CAS  Google Scholar 

  41. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1:e10

    Article  CAS  Google Scholar 

  42. Jeong YJ, Choi YJ, Kwon HM, Kang SW, Park HS, Lee M, Kang YH (2005) Differential inhibition of oxidized LDL-induced apoptosis in human endothelial cells treated with different flavonoids. Br J Nutr 93:581–591

    Article  CAS  Google Scholar 

  43. Babich H, Schuck AG, Weisburg JH, Zuckerbraun HL (2011) Research strategies in the study of the pro-oxidant nature of polyphenol nutraceuticals. J Toxicol 2011:467305

    Article  Google Scholar 

  44. Chiu LC, Wan JM (1999) Induction of apoptosis in HL-60 cells by eicosapentaenoic acid (EPA) is associated with downregulation of bcl-2 expression. Cancer Lett 145:17–27

    Article  CAS  Google Scholar 

  45. Chan FL, Choi HL, Chen ZY, Chan PS, Huang Y (2000) Induction of apoptosis in prostate cancer cell lines by a flavonoid, baicalin. Cancer Lett 160:219–228

    Article  CAS  Google Scholar 

  46. Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M, Popescu LM, Das DK (2010) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 86:103–112

    Article  CAS  Google Scholar 

  47. Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK (2010) Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS One 5:e15288

    Article  CAS  Google Scholar 

  48. Chiu CT, Hsuan SW, Lin HH, Hsu CC, Chou FP, Chen JH (2015) Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy. J Food Sci 80:H649–H658

    Article  CAS  Google Scholar 

  49. Kim HS, Quon MJ, Kim JA (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2:187–195

    Article  CAS  Google Scholar 

  50. Pallauf K, Rimbach G (2013) Autophagy, polyphenols and healthy ageing. Ageing Res Rev 12:237–252

    Article  CAS  Google Scholar 

  51. Zhang Y, Yang ND, Zhou F, Shen T, Duan T, Zhou J, Shi Y, Zhu XQ, Shen HM (2012) (−)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLoS One 7:e46749

    Article  CAS  Google Scholar 

  52. Li W, Zhu S, Li J, Assa A, Jundoria A, Xu J, Fan S, Eissa NT, Tracey KJ, Sama AE, Wang H (2011) EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem Pharmacol 81:1152–1163

    Article  CAS  Google Scholar 

  53. Kim HS, Montana V, Jang HJ, Parpura V, Kim JA (2013) Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: a potential role for reducing lipid accumulation. J Biol Chem 288:22693–22705

    Article  CAS  Google Scholar 

  54. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    Article  CAS  Google Scholar 

  55. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  CAS  Google Scholar 

  56. Guo H, Chen Y, Liao L, Wu W (2013) Resveratrol protects HUVECs from oxidized-LDL induced oxidative damage by autophagy upregulation via the AMPK/SIRT1 pathway. Cardiovasc Drugs Ther 27:189–198

    Article  CAS  Google Scholar 

  57. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998

    Article  CAS  Google Scholar 

  58. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243–35246

    Article  CAS  Google Scholar 

  59. Cao C, Subhawong T, Albert JM, Kim KW, Geng L, Sekhar KR, Gi YJ, Lu B (2006) Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res 66:10040–10047

    Article  CAS  Google Scholar 

  60. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL (1998) The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 95:15587–15591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant from the National Science Council (NSC99-2632-B-040-001-MY3), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Hsuan Lin.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., Lee, MS., Wang, CP. et al. Autophagic effects of Hibiscus sabdariffa leaf polyphenols and epicatechin gallate (ECG) against oxidized LDL-induced injury of human endothelial cells. Eur J Nutr 56, 1963–1981 (2017). https://doi.org/10.1007/s00394-016-1239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1239-4

Keywords

Navigation