Skip to main content
Log in

Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Studies in humans suggest that consumption of low-carbohydrate, high-fat diets (LC–HF) could be detrimental for growth and bone health. In young male rats, LC–HF diets negatively affect bone health by impairing the growth hormone/insulin-like growth factor axis (GH/IGF axis), while the effects in female rats remain unknown. Therefore, we investigated whether sex-specific effects of LC–HF diets on bone health exist.

Methods

Twelve-week-old male and female Wistar rats were isoenergetically pair-fed either a control diet (CD), “Atkins-style” protein-matched diet (LC–HF-1), or ketogenic low-protein diet (LC–HF-2) for 4 weeks. In females, microcomputed tomography and histomorphometry analyses were performed on the distal femur. Sex hormones were analysed with liquid chromatography–tandem mass spectrometry, and endocrine parameters including GH and IGF-I were measured by immunoassay.

Results

Trabecular bone volume, serum IGF-I and the bone formation marker P1NP were lower in male rats fed both LC–HF diets versus CD. LC–HF diets did not impair bone health in female rats, with no change in trabecular or cortical bone volume nor in serum markers of bone turnover between CD versus both LC–HF diet groups. Pituitary GH secretion was lower in female rats fed LC–HF diet, with no difference in circulating IGF-I. Circulating sex hormone concentrations remained unchanged in male and female rats fed LC–HF diets.

Conclusion

A 4-week consumption of LC–HF diets has sex-specific effects on bone health—with no effects in adult female rats yet negative effects in adult male rats. This response seems to be driven by a sex-specific effect of LC–HF diets on the GH/IGF system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sharma S, Jain P (2014) The modified Atkins diet in refractory epilepsy. Epilepsy Res Treat 2014:404202. doi:10.1155/2014/404202

    Google Scholar 

  2. Mackay MT, Bicknell-Royle J, Nation J, Humphrey M, Harvey AS (2005) The ketogenic diet in refractory childhood epilepsy. J Paediatr Child Health 41(7):353–357. doi:10.1111/j.1440-1754.2005.00630.x

    Article  Google Scholar 

  3. Atallah R, Filion KB, Wakil SM, Genest J, Joseph L, Poirier P, Rinfret S, Schiffrin EL, Eisenberg MJ (2014) Long-term effects of 4 popular diets on weight loss and cardiovascular risk factors: a systematic review of randomized controlled trials. Circ Cardiovasc Qual Outcomes 7(6):815–827. doi:10.1161/CIRCOUTCOMES.113.000723

    Article  Google Scholar 

  4. Bielohuby M, Sisley S, Sandoval D, Herbach N, Zengin A, Fischereder M, Menhofer D, Stoehr BJ, Stemmer K, Wanke R, Tschop MH, Seeley RJ, Bidlingmaier M (2013) Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets. Am J Physiol Endocrinol Metab 305(9):E1059–E1070. doi:10.1152/ajpendo.00208.2013

    Article  CAS  Google Scholar 

  5. Pissios P, Hong S, Kennedy AR, Prasad D, Liu FF, Maratos-Flier E (2013) Methionine and choline regulate the metabolic phenotype of a ketogenic diet. Mol Metab 2(3):306–313. doi:10.1016/j.molmet.2013.07.003

    Article  CAS  Google Scholar 

  6. Bielohuby M, Menhofer D, Kirchner H, Stoehr BJ, Muller TD, Stock P, Hempel M, Stemmer K, Pfluger PT, Kienzle E, Christ B, Tschop MH, Bidlingmaier M (2011) Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein. Am J Physiol Endocrinol Metab 300(1):E65–E76. doi:10.1152/ajpendo.00478.2010

    Article  CAS  Google Scholar 

  7. Ellenbroek JH, van Dijck L, Tons HA, Rabelink TJ, Carlotti F, Ballieux BE, de Koning EJ (2014) Long-term ketogenic diet causes glucose intolerance and reduced beta- and alpha-cell mass but no weight loss in mice. Am J Physiol Endocrinol Metab 306(5):E552–E558. doi:10.1152/ajpendo.00453.2013

    Article  CAS  Google Scholar 

  8. Jornayvaz FR, Jurczak MJ, Lee H-Y, Birkenfeld AL, Frederick DW, Zhang D, Zhang X-M, Samuel VT, Shulman GI (2010) A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am J Physiol Endocrinol Metab 299(5):E808–E815. doi:10.1152/ajpendo.00361.2010

    Article  CAS  Google Scholar 

  9. Bielohuby M, Sawitzky M, Stoehr BJ, Stock P, Menhofer D, Ebensing S, Bjerre M, Frystyk J, Binder G, Strasburger C, Wu Z, Christ B, Hoeflich A, Bidlingmaier M (2011) Lack of dietary carbohydrates induces hepatic growth hormone (GH) resistance in rats. Endocrinology 152(5):1948–1960. doi:10.1210/en.2010-1423

    Article  CAS  Google Scholar 

  10. Caton SJ, Bielohuby M, Bai Y, Spangler LJ, Burget L, Pfluger P, Reinel C, Czisch M, Reincke M, Obici S, Kienzle E, Tschop MH, Bidlingmaier M (2012) Low-carbohydrate high-fat diets in combination with daily exercise in rats: effects on body weight regulation, body composition and exercise capacity. Physiol Behav 106(2):185–192. doi:10.1016/j.physbeh.2012.02.003

    Article  CAS  Google Scholar 

  11. Aaseth J, Boivin G, Andersen O (2012) Osteoporosis and trace elements—an overview. J Trace Elem Med Biol 26(2–3):149–152. doi:10.1016/j.jtemb.2012.03.017

    Article  CAS  Google Scholar 

  12. Peterson SJ, Tangney CC, Pimentel-Zablah EM, Hjelmgren B, Booth G, Berry-Kravis E (2005) Changes in growth and seizure reduction in children on the ketogenic diet as a treatment for intractable epilepsy. J Am Diet Assoc 105(5):718–725. doi:10.1016/j.jada.2005.02.009

    Article  Google Scholar 

  13. Williams S, Basualdo-Hammond C, Curtis R, Schuller R (2002) Growth retardation in children with epilepsy on the ketogenic diet: a retrospective chart review. J Am Diet Assoc 102(3):405–407

    Article  Google Scholar 

  14. Blouin K, Despres JP, Couillard C, Tremblay A, Prud’homme D, Bouchard C, Tchernof A (2005) Contribution of age and declining androgen levels to features of the metabolic syndrome in men. Metab Clin Exp 54(8):1034–1040. doi:10.1016/j.metabol.2005.03.006

    Article  CAS  Google Scholar 

  15. Nguyen TV, Sambrook PN, Eisman JA (1998) Bone loss, physical activity, and weight change in elderly women: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res 13(9):1458–1467. doi:10.1359/jbmr.1998.13.9.1458

    Article  CAS  Google Scholar 

  16. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 29(5):535–559. doi:10.1210/er.2007-0036

    Article  CAS  Google Scholar 

  17. Bielohuby M, Matsuura M, Herbach N, Kienzle E, Slawik M, Hoeflich A, Bidlingmaier M (2010) Short-term exposure to low-carbohydrate, high-fat diets induces low bone mineral density and reduces bone formation in rats. J Bone Miner Res 25(2):275–284. doi:10.1359/jbmr.090813

    Article  CAS  Google Scholar 

  18. Frommelt L, Bielohuby M, Stoehr BJ, Menhofer D, Bidlingmaier M, Kienzle E (2014) Effects of low-carbohydrate, high-fat diets on apparent digestibility of minerals and trace elements in rats. Nutrition 30(7–8):869–875. doi:10.1016/j.nut.2013.11.017

    Article  CAS  Google Scholar 

  19. Suzuki HK, Mathews A (1966) Two-color fluorescent labeling of mineralizing tissues with tetracycline and 2,4-bis[N,N′-di-(carbomethyl)aminomethyl] fluorescein. Stain Technol 41(1):57–60

    Article  CAS  Google Scholar 

  20. Abramoff M, Magalhaes P, Ram S (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  21. Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47(6):1076–1079. doi:10.1016/j.bone.2010.08.023

    Article  Google Scholar 

  22. Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, Herzog H (2002) Hypothalamic Y2 receptors regulate bone formation. J Clin Investig 109(7):915–921. doi:10.1172/JCI14588

    Article  CAS  Google Scholar 

  23. Bielohuby M, Popp S, Bidlingmaier M (2012) A guide for measurement of circulating metabolic hormones in rodents: pitfalls during the pre-analytical phase. Mol Metab 1(1–2):47–60. doi:10.1016/j.molmet.2012.07.004

    Article  CAS  Google Scholar 

  24. Fanelli F, Belluomo I, Di Lallo VD, Cuomo G, De Iasio R, Baccini M, Casadio E, Casetta B, Vicennati V, Gambineri A, Grossi G, Pasquali R, Pagotto U (2011) Serum steroid profiling by isotopic dilution-liquid chromatography-mass spectrometry: comparison with current immunoassays and reference intervals in healthy adults. Steroids 76(3):244–253. doi:10.1016/j.steroids.2010.11.005

    Article  CAS  Google Scholar 

  25. Xu J, Bekaert AJ, Dupont J, Rouve S, Annesi-Maesano I, De Magalhaes Filho CD, Kappeler L, Holzenberger M (2011) Exploring endocrine GH pattern in mice using rank plot analysis and random blood samples. J Endocrinol 208(2):119–129. doi:10.1677/JOE-10-0317

    Article  CAS  Google Scholar 

  26. Arnetz L, Ekberg NR, Alvarsson M (2014) Sex differences in type 2 diabetes: focus on disease course and outcomes. Diabetes Metab Syndr Obes 7:409–420. doi:10.2147/DMSO.S51301

    Article  Google Scholar 

  27. Kautzky-Willer A, Handisurya A (2009) Metabolic diseases and associated complications: sex and gender matter! Eur J Clin Investig 39(8):631–648. doi:10.1111/j.1365-2362.2009.02161.x

    Article  CAS  Google Scholar 

  28. Leitner MK, Kautzky-Willer A (2013) Gender-specific differences in age-associated endocrinology. Z Gerontol Geriatr 46(6):505–510. doi:10.1007/s00391-013-0512-x

    Article  CAS  Google Scholar 

  29. Rasul S, Ilhan A, Wagner L, Luger A, Kautzky-Willer A (2012) Diabetic polyneuropathy relates to bone metabolism and markers of bone turnover in elderly patients with type 2 diabetes: greater effects in male patients. Gend Med 9(3):187–196. doi:10.1016/j.genm.2012.03.004

    Article  Google Scholar 

  30. Morselli E, Fuente-Martin E, Finan B, Kim M, Frank A, Garcia-Caceres C, Navas CR, Gordillo R, Neinast M, Kalainayakan SP, Li DL, Gao Y, Yi CX, Hahner L, Palmer BF, Tschop MH, Clegg DJ (2014) Hypothalamic PGC-1alpha protects against high-fat diet exposure by regulating ERalpha. Cell Rep 9(2):633–645. doi:10.1016/j.celrep.2014.09.025

    Article  CAS  Google Scholar 

  31. Kim AM, Tingen CM, Woodruff TK (2010) Sex bias in trials and treatment must end. Nature 465(7299):688–689. doi:10.1038/465688a

    Article  CAS  Google Scholar 

  32. Zucker I, Beery AK (2010) Males still dominate animal studies. Nature 465(7299):690. doi:10.1038/465690a

    Article  CAS  Google Scholar 

  33. Bergqvist AG, Schall JI, Stallings VA, Zemel BS (2008) Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr 88(6):1678–1684. doi:10.3945/ajcn.2008.26099

    Article  CAS  Google Scholar 

  34. Hahn TJ, Halstead LR, DeVivo DC (1979) Disordered mineral metabolism produced by ketogenic diet therapy. Calcif Tissue Int 28(1):17–22

    Article  CAS  Google Scholar 

  35. Kim JT, Kang HC, Song JE, Lee MJ, Lee YJ, Lee EJ, Lee JS, Kim HD (2013) Catch-up growth after long-term implementation and weaning from ketogenic diet in pediatric epileptic patients. Clin Nutr 32(1):98–103. doi:10.1016/j.clnu.2012.05.019

    Article  Google Scholar 

  36. Gras D, Roze E, Caillet S, Meneret A, Doummar D, Billette de Villemeur T, Vidailhet M, Mochel F (2014) GLUT1 deficiency syndrome: an update. Rev Neurol 170(2):91–99. doi:10.1016/j.neurol.2013.09.005

    Article  CAS  Google Scholar 

  37. Bertoli S, Trentani C, Ferraris C, De Giorgis V, Veggiotti P, Tagliabue A (2014) Long-term effects of a ketogenic diet on body composition and bone mineralization in GLUT-1 deficiency syndrome: a case series. Nutrition 30(6):726–728. doi:10.1016/j.nut.2014.01.005

    Article  CAS  Google Scholar 

  38. Ho KY, Leong DA, Sinha YN, Johnson ML, Evans WS, Thorner MO (1986) Sex-related differences in GH secretion in rat using reverse hemolytic plaque assay. Am J Physiol 250(6 Pt 1):E650–E654

    CAS  Google Scholar 

  39. Jansson JO, Eden S, Isaksson O (1985) Sexual dimorphism in the control of growth hormone secretion. Endocr Rev 6(2):128–150. doi:10.1210/edrv-6-2-128

    Article  CAS  Google Scholar 

  40. Tabb MM, Sun A, Zhou C, Grun F, Errandi J, Romero K, Pham H, Inoue S, Mallick S, Lin M, Forman BM, Blumberg B (2003) Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 278(45):43919–43927. doi:10.1074/jbc.M303136200

    Article  CAS  Google Scholar 

  41. Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S (2007) Vitamin K2 induces phosphorylation of protein kinase A and expression of novel target genes in osteoblastic cells. J Mol Endocrinol 39(4):239–247. doi:10.1677/JME-07-0048

    Article  CAS  Google Scholar 

  42. Hughes JM, Petit MA (2010) Biological underpinnings of Frost’s mechanostat thresholds: the important role of osteocytes. J Musculoskelet Neuronal Interact 10(2):128–135

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Sarina Benedix and Amon Horngacher (Medizinische Klinik und Poliklinik IV, Munich, Germany) for excellent technical assistance. A. Z was partly funded by a grant from the DAAD (Deutscher Akademischer Austauschdienst). This study was partly supported by a grant from the Else Kröner-Fresenius-Stiftung (Grant to MaBid, No. 2014_A108). A. Z., M. B. and M. B. designed research; A. Z., B. K., Y. C., M. B., R. S., E. S., N. H., F. F., M. M. and S. M. conducted research; A. Z. and M. B. analysed data; A. Z., M. B. and M. B. wrote the paper; M. B. had primary responsibility for final content. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Bielohuby.

Additional information

Ayse Zengin and Benedikt Kropp have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zengin, A., Kropp, B., Chevalier, Y. et al. Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats. Eur J Nutr 55, 2307–2320 (2016). https://doi.org/10.1007/s00394-015-1040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-1040-9

Keywords

Navigation