Skip to main content
Log in

Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

We recently reported that direct and maternal supplementation with n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) alleviates the metabolic disturbances in adult hamster pups fed with a high-fat diet (HFD). In this study, we hypothesized that these results involved a perinatal modulating effect of sphingolipids by n-3 LC-PUFA.

Methods

We studied the effect of direct and maternal n-3 LC-PUFA supplementation on sphingolipid contents in liver and muscle, hepatic triglycerides (TG) secretion and glucose tolerance. Offspring male hamsters born from supplemented (Cω) or unsupplemented (C) mothers were subjected after weaning to a HFD during 16 weeks, without (Cω-HF or C-HF) or with direct supplementation with n-3 LC-PUFA (C-HFω).

Results

Direct supplementation decreased sphingosine, sphinganine and ceramides in liver and decreased sphingosine, sphinganine, sphingosine-1-phosphate (S1P) and ceramides in muscle in C-HFω compared to C-HF (p < 0.05). Maternal supplementation decreased C20 ceramide and lactosylceramide in liver and sphinganine, S1P and lactosylceramide in muscle (p < 0.05). This supplementation tended to decrease glucosylceramide in liver (p < 0.06) and muscle (p < 0.07) in Cω-HF compared to C-HF. Direct supplementation increased glucose tolerance and decreased hepatic TG secretion and hepatic gene expression levels of diacylglycerol O-acyltransferase 2 (DGAT2), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase, stearoyl-CoA desaturase-1 (SCD1) and tumor necrosis factor α (TNFα). Maternal supplementation decreased basal glycemia and hepatic TG secretion. We observed a positive correlation between hepatic TG secretion and hepatic ceramide (p = 0.0059), and between basal glycemia and hepatic ceramide (p = 0.04) or muscle lactosylceramide contents (p = 0.001).

Conclusion

We observed an improvement of lipids and glucose metabolism in hamster with n-3 LC-PUFA direct supplementation and a decrease in glycemia and hepatic TG secretion with maternal supplementation. These results are probably related to a decrease in both lipogenesis and sphingolipid contents in liver and muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASM:

Acid sphingomyelinase

AUC:

Area under the curve

DGAT2:

Diacylglycerol O-acyltransferase 2

FBG:

Fasting blood glucose

HDL:

High-density lipoprotein

HFD:

High-fat diet

IPGTT:

Intraperitoneal glucose tolerance test

LC-PUFA:

Long-chain polyunsaturated fatty acids

LDL:

Low-density lipoprotein

PPAR α:

Peroxisome proliferator-activated receptor α

SCD1:

Stearoyl-CoA desaturase-1

SR-B1:

Scavenger receptor type B class 1

SREBP-1c:

Sterol regulatory element-binding protein-1c

S1P:

Sphingosine-1-phosphate

SM:

Sphingomyelins

SPT:

Serine palmitoyl transferase

TNFα:

Tumor necrosis factor α

VLDL:

Very low-density lipoprotein

References

  1. Whayne TF Jr (2013) Problems and possible solutions for therapy with statins. Int J Angiol 22:75–82

    Article  Google Scholar 

  2. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–179

    Article  CAS  Google Scholar 

  3. Yang G, Badeanlou L, Bielawski J, Roberts AJ, Hannun YA, Samad F (2009) Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am J Physiol Endocrinol Metab 297:E211–E224

    Article  CAS  Google Scholar 

  4. Luberto C, Kraveka JM, Hannun YA (2002) Ceramide regulation of apoptosis versus differentiation: a walk on a fine line. Lessons from neurobiology. Neurochem Res 27:609–617

    Article  CAS  Google Scholar 

  5. Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29:381–402

    Article  CAS  Google Scholar 

  6. Dekker MJ, Baker C, Naples M, Samsoondar J, Zhang R, Qiu W, Sacco J, Adeli K (2013) Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction. Atherosclerosis 228:98–109

    Article  CAS  Google Scholar 

  7. Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH (1998) Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem 273:32487–32490

    Article  CAS  Google Scholar 

  8. Ussher JR, Folmes CD, Keung W, Fillmore N, Jaswal JS, Cadete VJ, Beker DL, Lam VH, Zhang L, Lopaschuk GD (2012) Inhibition of serine palmitoyl transferase I reduces cardiac ceramide levels and increases glycolysis rates following diet-induced insulin resistance. PLoS One 7:e37703

    Article  CAS  Google Scholar 

  9. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369:1090–1098

    Article  CAS  Google Scholar 

  10. Harrison N, Abhyankar B (2005) The mechanism of action of omega-3 fatty acids in secondary prevention post-myocardial infarction. Curr Med Res Opin 21:95–100

    Article  CAS  Google Scholar 

  11. Botelho PB, Mariano Kda R, Rogero MM, de Castro IA (2013) Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice. Lipids Health Dis 12:38

    Article  CAS  Google Scholar 

  12. Gonzalez-Periz A, Horrillo R, Ferre N, Gronert K, Dong B, Moran-Salvador E, Titos E, Martinez-Clemente M, Lopez-Parra M, Arroyo V, Claria J (2009) Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J 23:1946–1957

    Article  CAS  Google Scholar 

  13. Kasbi Chadli F, Andre A, Prieur X, Loirand G, Meynier A, Krempf M, Nguyen P, Ouguerram K (2012) n-3 PUFA prevent metabolic disturbances associated with obesity and improve endothelial function in golden Syrian hamsters fed with a high-fat diet. Br J Nutr 107(9):1305–1315

    Article  CAS  Google Scholar 

  14. Neschen S, Moore I, Regittnig W, Yu CL, Wang Y, Pypaert M, Petersen KF, Shulman GI (2002) Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content. Am J Physiol Endocrinol Metab 282:E395–E401

    Article  CAS  Google Scholar 

  15. Jolly CA, Jiang YH, Chapkin RS, McMurray DN (1997) Dietary (n-3) polyunsaturated fatty acids suppress murine lymphoproliferation, interleukin-2 secretion, and the formation of diacylglycerol and ceramide. J Nutr 127:37–43

    CAS  Google Scholar 

  16. Zeidan YH, Hannun YA (2010) The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr Mol Med 10:454–466

    Article  CAS  Google Scholar 

  17. Tikhonenko M, Lydic TA, Opreanu M, Li Calzi S, Bozack S, McSorley KM, Sochacki AL, Faber MS, Hazra S, Duclos S, Guberski D, Reid GE, Grant MB, Busik JV (2013) N-3 polyunsaturated fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function. PLoS One 8:e55177

    Article  CAS  Google Scholar 

  18. Lankinen M, Schwab U, Erkkila A, Seppanen-Laakso T, Hannila ML, Mussalo H, Lehto S, Uusitupa M, Gylling H, Oresic M (2009) Fatty fish intake decreases lipids related to inflammation and insulin signaling—a lipidomics approach. PLoS One 4:e5258

    Article  Google Scholar 

  19. Sanjurjo P, Ruiz-Sanz JI, Jimeno P, Aldamiz-Echevarria L, Aquino L, Matorras R, Esteban J, Banque M (2004) Supplementation with docosahexaenoic acid in the last trimester of pregnancy: maternal-fetal biochemical findings. J Perinat Med 32:132–136

    CAS  Google Scholar 

  20. Olsen SF, Olsen J, Frische G (1990) Does fish consumption during pregnancy increase fetal growth? A study of the size of the newborn, placental weight and gestational age in relation to fish consumption during pregnancy. Int J Epidemiol 19:971–977

    Article  CAS  Google Scholar 

  21. Olsen SF, Secher NJ (2002) Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. BMJ 324:447

    Article  Google Scholar 

  22. Olsen SF, Secher NJ (1990) A possible preventive effect of low-dose fish oil on early delivery and pre-eclampsia: indications from a 50-year-old controlled trial. Br J Nutr 64:599–609

    Article  CAS  Google Scholar 

  23. Siemelink M, Verhoef A, Dormans JA, Span PN, Piersma AH (2002) Dietary fatty acid composition during pregnancy and lactation in the rat programs growth and glucose metabolism in the offspring. Diabetologia 45:1397–1403

    Article  CAS  Google Scholar 

  24. Ghafoorunissa AI, Basak S, Ehtesham NZ (2009) Impact of maternal dietary fatty acid composition on glucose and lipid metabolism in male rat offspring aged 105 d. Br J Nutr 102(2):233–241

    Article  Google Scholar 

  25. Kasbi Chadli F, Boquien C-Y, Simard G, Ulmann L, Mimouni V, Leray V, Meynier A, Ferchaud-Roucher V, Champ M, Nguyen P, Ouguerram K (2014) Maternal supplementation with n-3 long chain polyunsaturated fatty acids during perinatal period alleviates the metabolic syndrome disturbances in adult hamster pups fed a high fat diet after weaning. J Nutr Biochem 25(7):726–733

    Article  CAS  Google Scholar 

  26. Schotz MC, Scanu A, Page IH (1957) Effect of triton on lipoprotein lipase of rat plasma. Am J Physiol 188:399–402

    CAS  Google Scholar 

  27. Millar JS, Maugeais C, Fuki IV, Rader DJ (2002) Normal production rate of apolipoprotein B in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 22:989–994

    Article  CAS  Google Scholar 

  28. Siri P, Candela N, Zhang YL, Ko C, Eusufzai S, Ginsberg HN, Huang LS (2001) Post-transcriptional stimulation of the assembly and secretion of triglyceride-rich apolipoprotein B lipoproteins in a mouse with selective deficiency of brown adipose tissue, obesity, and insulin resistance. J Biol Chem 276:46064–46072

    Article  CAS  Google Scholar 

  29. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  30. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  31. Bodennec J, Koul O, Aguado I, Brichon G, Zwingelstein G, Portoukalian J (2000) A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges. J Lipid Res 41:1524–1531

    CAS  Google Scholar 

  32. Lizarazo D, Zabala V, Tong M, Longato L, de la Monte SM (2013) Ceramide inhibitor myriocin restores insulin/insulin growth factor signaling for liver remodeling in experimental alcohol-related steatohepatitis. J Gastroenterol Hepatol 28:1660–1668

    CAS  Google Scholar 

  33. Miklosz A, Lukaszuk B, Baranowski M, Gorski J, Chabowski A (2013) Effects of inhibition of serine palmitoyltransferase (SPT) and sphingosine kinase 1 (SphK1) on palmitate induced insulin resistance in L6 myotubes. PLoS One 8:e85547

    Article  Google Scholar 

  34. Chatterjee SB, Dey S, Shi WY, Thomas K, Hutchins GM (1997) Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology 7:57–65

    Article  CAS  Google Scholar 

  35. Hojjati MR, Li Z, Zhou H, Tang S, Huan C, Ooi E, Lu S, Jiang XC (2005) Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J Biol Chem 280:10284–10289

    Article  CAS  Google Scholar 

  36. Auge N, Maupas-Schwalm F, Elbaz M, Thiers JC, Waysbort A, Itohara S, Krell HW, Salvayre R, Negre-Salvayre A (2004) Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation 110:571–578

    Article  CAS  Google Scholar 

  37. Glaros EN, Kim WS, Wu BJ, Suarna C, Quinn CM, Rye KA, Stocker R, Jessup W, Garner B (2007) Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration. Biochem Pharmacol 73:1340–1346

    Article  CAS  Google Scholar 

  38. Park TS, Panek RL, Rekhter MD, Mueller SB, Rosebury WS, Robertson A, Hanselman JC, Kindt E, Homan R, Karathanasis SK (2006) Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 189:264–272

    Article  CAS  Google Scholar 

  39. Qin B, Anderson RA, Kuzuya T, Kitaura Y, Shimomura Y (2012) Multiple factors and pathways involved in hepatic very low density lipoprotein-apoB100 overproduction in Otsuka Long-Evans Tokushima Fatty rats. Atherosclerosis 222:409–416

    Article  CAS  Google Scholar 

  40. Chavez JA, Holland WL, Bar J, Sandhoff K, Summers SA (2005) Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem 280:20148–20153

    Article  CAS  Google Scholar 

  41. Summers SA, Garza LA, Zhou H, Birnbaum MJ (1998) Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 18:5457–5464

    Article  CAS  Google Scholar 

  42. Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, Knotts TA, Shui G, Clegg DJ, Wenk MR, Pagliassotti MJ, Scherer PE, Summers SA (2011) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121:1858–1870

    Article  CAS  Google Scholar 

  43. Basaranoglu M, Basaranoglu G, Sabuncu T, Senturk H (2013) Fructose as a key player in the development of fatty liver disease. World J Gastroenterol 19:1166–1172

    Article  CAS  Google Scholar 

  44. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40:185–194

    Article  CAS  Google Scholar 

  45. Qin B, Anderson RA, Adeli K (2008) Tumor necrosis factor-alpha directly stimulates the overproduction of hepatic apolipoprotein B100-containing VLDL via impairment of hepatic insulin signaling. Am J Physiol Gastrointest Liver Physiol 294:G1120–G1129

    Article  CAS  Google Scholar 

  46. Dawson G, Kruski AW, Scanu AM (1976) Distribution of glycosphingolipids in the serum lipoproteins of normal human subjects and patients with hypo- and hyperlipidemias. J Lipid Res 17:125–131

    CAS  Google Scholar 

  47. Tagami S, Inokuchi Ji J, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y, Sakaue S, Igarashi Y (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277:3085–3092

    Article  CAS  Google Scholar 

  48. Overkleeft HS, Renkema GH, Neele J, Vianello P, Hung IO, Strijland A, van der Burg AM, Koomen GJ, Pandit UK, Aerts JM (1998) Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J Biol Chem 273:26522–26527

    Article  CAS  Google Scholar 

  49. Wennekes T, van den Berg RJ, Donker W, van der Marel GA, Strijland A, Aerts JM, Overkleeft HS (2007) Development of adamantan-1-yl-methoxy-functionalized 1-deoxynojirimycin derivatives as selective inhibitors of glucosylceramide metabolism in man. J Org Chem 72:1088–1097

    Article  CAS  Google Scholar 

  50. Aerts JM, Ottenhoff R, Powlson AS, Grefhorst A, van Eijk M, Dubbelhuis PF, Aten J, Kuipers F, Serlie MJ, Wennekes T, Sethi JK, O’Rahilly S, Overkleeft HS (2007) Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56:1341–1349

    Article  CAS  Google Scholar 

  51. Lanza IR, Blachnio-Zabielska A, Johnson ML, Schimke JM, Jakaitis DR, Lebrasseur NK, Jensen MD, Nair KS, Zabielski P (2013) Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet. Am J Physiol Endocrinol Metab 304:E1391–E1403

    Article  CAS  Google Scholar 

  52. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J (2006) Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 55:2579–2587

    Article  CAS  Google Scholar 

  53. Kowalski GM, Carey AL, Selathurai A, Kingwell BA, Bruce CR (2013) Plasma sphingosine-1-phosphate is elevated in obesity. PLoS One 8:e72449

    Article  CAS  Google Scholar 

  54. Blachnio-Zabielska A, Baranowski M, Zabielski P, Gorski J (2010) Effect of high fat diet enriched with unsaturated and diet rich in saturated fatty acids on sphingolipid metabolism in rat skeletal muscle. J Cell Physiol 225:786–791

    Article  CAS  Google Scholar 

  55. Das UN (2007) Is metabolic syndrome X a disorder of the brain with the initiation of low-grade systemic inflammatory events during the perinatal period? J Nutr Biochem 18:701–713

    Article  CAS  Google Scholar 

  56. Hauner H, Brunner S, Amann-Gassner U (2013) The role of dietary fatty acids for early human adipose tissue growth. Am J Clin Nutr 98:549S–555S

    Article  CAS  Google Scholar 

  57. Lee HS, Barraza-Villarreal A, Hernandez-Vargas H, Sly PD, Biessy C, Ramakrishnan U, Romieu I, Herceg Z (2013) Modulation of DNA methylation states and infant immune system by dietary supplementation with omega-3 PUFA during pregnancy in an intervention study. Am J Clin Nutr 98(2):480–487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Audrey Aguesse and Stéphanie Crossouard for their technical assistance. This work was supported by CRNHO (Centre de Recherche en Nutrition Humaine Ouest, Nantes) and research program NUPEM supported by Region Pays de la Loire. The n-3 LC-PUFA were kindly provided by Pierre Fabre Santé.

Conflict of interest

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Ouguerram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasbi-Chadli, F., Ferchaud-Roucher, V., Krempf, M. et al. Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet. Eur J Nutr 55, 589–599 (2016). https://doi.org/10.1007/s00394-015-0879-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0879-0

Keywords

Navigation