Skip to main content
Log in

High-fructose corn syrup-induced hepatic dysfunction in rats: improving effect of resveratrol

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The increased consumption of high-fructose corn syrup (HFCS) may contribute to the worldwide epidemic of fatty liver. In this study, we have investigated whether HFCS intake (20 % beverages) influences lipid synthesis and accumulation in conjunction with insulin receptor substrate-1/2 (IRS-1; IRS-2), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1) and inducible NOS (iNOS) expressions in liver of rats. Resveratrol was tested for its potential efficacy on changes induced by HFCS.

Methods

Animals were randomly divided into four groups as control, resveratrol, HFCS and resveratrol plus HFCS (resveratrol + HFCS). HFCS was given as 20 % solutions in drinking water. Feeding of all rats was maintained by a standard diet that enriched with or without resveratrol for 12 weeks.

Results

Dietary HFCS increased triglyceride content and caused mild microvesicular steatosis in association with up-regulation of fatty acid synthase and sterol regulatory element binding protein (SREBP)-1c in liver of rats. Moreover, HFCS feeding impaired hepatic expression levels of IRS-1, eNOS and SIRT1 mRNA/proteins, but did not change iNOS level. Resveratrol promoted IRS, eNOS and SIRT1, whereas suppressed SREBP-1c expression in rats fed with HFCS.

Conclusions

Resveratrol supplementation considerably restored hepatic changes induced by HFCS. The improvement of hepatic insulin signaling and activation of SIRT1 by resveratrol may be associated with decreased triglyceride content and expression levels of the lipogenic genes of the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HFCS:

High-fructose corn syrup

NAFLD:

Non-alcoholic fatty liver disease

Res:

Resveratrol

IRS-1; IRS-2:

Insulin receptor substrate-1/2

eNOS:

Endothelial nitric oxide synthase

SIRT1:

Sirtuin 1

iNOS:

Inducible nitric oxide synthase

FASN:

Fatty acid synthase

SREBP:

Sterol regulatory element binding protein

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

PI3K:

Phosphatidylinositol 3-kinase

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

H&E:

Hematoxylin and eosin

ORO:

Oil Red O

TBST:

Tris buffer with NaCl–Tween

HRP:

Horseradish peroxidase

References

  1. Stanhope KL, Havel PJ (2010) Fructose consumption: recent results and their potential implications. Ann N Y Acad Sci 1190:15–24. doi:10.1111/j.1749-6632.2009.05266.x

    Article  CAS  Google Scholar 

  2. Heiss SN (2013) “Healthy” discussions about risk: The corn refiners association’s strategic negotiation of authority in the debate over high fructose corn syrup. Public Underst Sci 22:219–235. doi:10.1177/0963662511402281

    Article  Google Scholar 

  3. Collison KS, Saleh SM, Bakheet RH et al (2009) Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55. Obesity (Silver Spring) 17:2003–2013. doi:10.1038/oby.2009.58

    Article  CAS  Google Scholar 

  4. Bocarsly ME, Powell ES, Avena NM, Hoebel BG (2010) High-fructose corn syrup causes characteristics of obesity in rats: increased body weight, body fat and triglyceride levels. Pharmacol Biochem Behav 97:101–106. doi:10.1016/j.pbb.2010.02.012

    Article  CAS  Google Scholar 

  5. Akar F, Uludağ O, Aydın A et al (2012) High-fructose corn syrup causes vascular dysfunction associated with metabolic disturbance in rats: protective effect of resveratrol. Food Chem Toxicol 50:2135–2141. doi:10.1016/j.fct.2012.03.061

    Article  CAS  Google Scholar 

  6. Babacanoglu C, Yildirim N, Sadi G et al (2013) Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats. Food Chem Toxicol 60:160–167. doi:10.1016/j.fct.2013.07.026

    Article  CAS  Google Scholar 

  7. Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118:829–838. doi:10.1172/JCI34275

    Article  CAS  Google Scholar 

  8. Nomura K, Yamanouchi T (2012) The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem 23:203–208. doi:10.1016/j.jnutbio.2011.09.006

    Article  CAS  Google Scholar 

  9. Ackerman Z, Oron-Herman M, Grozovski M et al (2005) Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 45:1012–1018. doi:10.1161/01.HYP.0000164570.20420.67

    Article  CAS  Google Scholar 

  10. Armutcu F, Coskun O, Gürel A et al (2005) Thymosin alpha 1 attenuates lipid peroxidation and improves fructose-induced steatohepatitis in rats. Clin Biochem 38:540–547. doi:10.1016/j.clinbiochem.2005.01.013

    Article  CAS  Google Scholar 

  11. Kanuri G, Spruss A, Wagnerberger S et al (2011) Role of tumor necrosis factor α (TNFα) in the onset of fructose-induced nonalcoholic fatty liver disease in mice. J Nutr Biochem 22:527–534. doi:10.1016/j.jnutbio.2010.04.007

    Article  CAS  Google Scholar 

  12. Haas JT, Miao J, Chanda D et al (2012) Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab 15:873–884. doi:10.1016/j.cmet.2012.05.002

    Article  CAS  Google Scholar 

  13. Collison KS, Maqbool ZM, Inglis AL et al (2010) Effect of dietary monosodium glutamate on HFCS-induced hepatic steatosis: expression profiles in the liver and visceral fat. Obesity (Silver Spring) 18:1122–1134. doi:10.1038/oby.2009.502

    Article  CAS  Google Scholar 

  14. Dong X, Park S, Lin X et al (2006) Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J Clin Invest 116:101–114. doi:10.1172/JCI25735

    Article  CAS  Google Scholar 

  15. Kubota N, Kubota T, Itoh S et al (2008) Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab 8:49–64. doi:10.1016/j.cmet.2008.05.007

    Article  CAS  Google Scholar 

  16. Zhao CX, Xu X, Cui Y et al (2009) Increased endothelial nitric-oxide synthase expression reduces hypertension and hyperinsulinemia in fructose-treated rats. J Pharmacol Exp Ther 328:610–620. doi:10.1124/jpet.108.143396

    Article  CAS  Google Scholar 

  17. Xu X, Zhao CX, Wang L et al (2010) Increased CYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice. Diabetes 59:997–1005. doi:10.2337/db09-1241

    Article  CAS  Google Scholar 

  18. Xu X, Tu L, Wang L et al (2011) CYP2J3 gene delivery reduces insulin resistance via upregulation of eNOS in fructose-treated rats. Cardiovasc Diabetol 10:114. doi:10.1186/1475-2840-10-114

    Article  CAS  Google Scholar 

  19. González-Rodríguez A, Mas Gutierrez JA, Sanz-González S et al (2010) Inhibition of PTP1B restores IRS1-mediated hepatic insulin signaling in IRS2-deficient mice. Diabetes 59:588–599. doi:10.2337/db09-0796

    Article  Google Scholar 

  20. Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342. doi:10.1038/nature05354

    Article  CAS  Google Scholar 

  21. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122. doi:10.1016/j.cell.2006.11.013

    Article  CAS  Google Scholar 

  22. Sheludiakova A, Rooney K, Boakes RA (2012) Metabolic and behavioural effects of sucrose and fructose/glucose drinks in the rat. Eur J Nutr 51:445–454. doi:10.1007/s00394-011-0228-x

    Article  CAS  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  24. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  Google Scholar 

  25. Ouyang X, Cirillo P, Sautin Y et al (2008) Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 48:993–999. doi:10.1016/j.jhep.2008.02.011

    Article  CAS  Google Scholar 

  26. Brown MS, Goldstein JL (2008) Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 7:95–96. doi:10.1016/j.cmet.2007.12.009

    Article  CAS  Google Scholar 

  27. Spruss A, Kanuri G, Uebel K et al (2011) Role of the inducible nitric oxide synthase in the onset of fructose-induced steatosis in mice. Antioxid Redox Signal 14:2121–2135. doi:10.1089/ars.2010.3263

    Article  CAS  Google Scholar 

  28. Kim F, Pham M, Maloney E et al (2008) Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol 28:1982–1988. doi:10.1161/ATVBAHA.108.169722

    Article  CAS  Google Scholar 

  29. Pfluger PT, Herranz D, Velasco-Miguel S et al (2008) Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA 105:9793–9798. doi:10.1073/pnas.0802917105

    Article  CAS  Google Scholar 

  30. Ponugoti B, Kim D-H, Xiao Z et al (2010) SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 285:33959–33970. doi:10.1074/jbc.M110.122978

    Article  CAS  Google Scholar 

  31. Sun C, Zhang F, Ge X et al (2007) SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 6:307–319. doi:10.1016/j.cmet.2007.08.014

    Article  CAS  Google Scholar 

  32. Fröjdö S, Durand C, Molin L et al (2011) Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 335:166–176. doi:10.1016/j.mce.2011.01.008

    Article  Google Scholar 

  33. Deng J-Y, Hsieh P-S, Huang J-P et al (2008) Activation of estrogen receptor is crucial for resveratrol-stimulating muscular glucose uptake via both insulin-dependent and -independent pathways. Diabetes 57:1814–1823. doi:10.2337/db07-1750

    Article  CAS  Google Scholar 

  34. Kang W, Hong HJ, Guan J et al (2012) Resveratrol improves insulin signaling in a tissue-specific manner under insulin-resistant conditions only: in vitro and in vivo experiments in rodents. Metabolism 61:424–433. doi:10.1016/j.metabol.2011.08.003

    Article  CAS  Google Scholar 

  35. Zhang J (2006) Resveratrol inhibits insulin responses in a SirT1-independent pathway. Biochem J 397:519–527. doi:10.1042/BJ20050977

    Article  CAS  Google Scholar 

  36. Zeng G, Nystrom FH, Ravichandran LV et al (2000) Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101:1539–1545

    Article  CAS  Google Scholar 

  37. Wang G-L, Fu Y-C, Xu W-C et al (2009) Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem Biophys Res Commun 380:644–649. doi:10.1016/j.bbrc.2009.01.163

    Article  CAS  Google Scholar 

  38. Fujimoto M, Shimizu N, Kunii K et al (2005) A role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice. Diabetes 54:1340–1348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Gazi University Research Fund (BAP 02/2011-39 and 02/2012-48).

Conflict of interest

There is no conflict of interest to disclose for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Akar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadi, G., Ergin, V., Yilmaz, G. et al. High-fructose corn syrup-induced hepatic dysfunction in rats: improving effect of resveratrol. Eur J Nutr 54, 895–904 (2015). https://doi.org/10.1007/s00394-014-0765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0765-1

Keywords

Navigation