Skip to main content
Log in

Neue molekulare Mechanismen in der Pathophysiologie der Psoriasisarthritis

Novel molecular mechanisms in the pathophysiology of psoriatic arthritis

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Die komplexe Pathogenese der Psoriasisarthritis (PsA) ist weiterhin nur teilweise geklärt. In den letzten Jahren kam es jedoch v. a. mit Bezug auf Entzündungsvorgänge der Enthesen zu einem stark verbesserten Verständnis dieser Erkrankung. Der Krankheitsaspekt der Enthesitis differenziert die PsA zunehmend von anderen Autoimmunerkrankungen und schärft das einzigartige pathologische klinische Bild der PsA. Mittels besseren pathogenetischen Verständnisses und des Aufkommens verschiedener Biomarkeransätze rücken die erfolgreiche Früherkennung einer PsA sowie eine zuverlässigere Identifikation von Psoriasisrisikopatienten aus der fernen Zukunft deutlich näher.

Abstract

The complex pathogenesis of psoriatic arthritis (PsA) is still only partially understood; however, recently a greatly improved understanding of this disease has been achieved, especially with respect to the inflammatory processes of the entheses. Thus, the clinical aspects of enthesitis increasingly differentiate PsA from other autoimmune diseases and sharpen the unique pathological clinical picture of PsA. Better pathophysiological understanding and the development of different biomarker approaches will bolster early detection of PsA. Therefore, the successful early recognition of PsA and more reliable identification of psoriasis patients at risk might be possible in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Prey S, Paul C, Bronsard V et al (2010) Assessment of risk of psoriatic arthritis in patients with plaque psoriasis: a systematic review of the literature. J Eur Acad Dermatol Venereol 24(Suppl 2):31–35

    Article  Google Scholar 

  2. Cretu D, Gao L, Liang K et al (2018) Differentiating psoriatic arthritis from psoriasis without psoriatic arthritis using novel serum biomarkers. Arthritis Care Res 70:454–461

    Article  CAS  Google Scholar 

  3. Lin J, Zhou Z, Huo R et al (2012) Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J Immunol 188:5776–5784

    Article  CAS  Google Scholar 

  4. Ohshima S, Kuchen S, Seemayer CA et al (2003) Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum 48:2788–2795

    Article  CAS  Google Scholar 

  5. Mahendran SM, Chandran V (2018) Exploring the psoriatic arthritis proteome in search of novel biomarkers. Proteomes 6(1):5. https://doi.org/10.3390/proteomes6010005

    Article  Google Scholar 

  6. Hansson C, Eriksson C, Alenius GM (2014) S‑calprotectin (S100A8/S100A9): a potential marker of inflammation in patients with psoriatic arthritis. J Immunol Res. https://doi.org/10.1155/2014/696415

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alenius GM, Eriksson C, Rantapaa Dahlqvist S (2009) Interleukin-6 and soluble interleukin-2 receptor alpha-markers of inflammation in patients with psoriatic arthritis? Clin Exp Rheumatol 27:120–123

    PubMed  Google Scholar 

  8. Abji F, Pollock RA, Liang K et al (2016) Brief report: CXCL10 is a possible biomarker for the development of psoriatic arthritis among patients with psoriasis. Arthritis Rheumatol 68:2911–2916

    Article  CAS  Google Scholar 

  9. Nisihara R, Skare TL, Zeni JO et al (2018) Plasma levels of pentraxin 3 in patients with spondyloarthritis. Biomarkers 23:14–17

    Article  CAS  Google Scholar 

  10. Jadon DR, Sengupta R, Nightingale A et al (2017) Serum bone-turnover biomarkers are associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a prospective cross-sectional comparative study. Arthritis Res Ther 19:210

    Article  Google Scholar 

  11. Ball J (1971) Enthesopathy of rheumatoid and ankylosing spondylitis. Ann Rheum Dis 30:213–223

    Article  CAS  Google Scholar 

  12. Polachek A, Li S, Chandran V et al (2017) Clinical enthesitis in a prospective longitudinal psoriatic arthritis cohort: incidence, prevalence, characteristics, and outcome. Arthritis Care Res 69:1685–1691

    Article  Google Scholar 

  13. Schett G, Lories RJ, D’Agostino MA et al (2017) Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol 13:731–741

    Article  CAS  Google Scholar 

  14. Johansen C, Usher PA, Kjellerup RB et al (2009) Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol 160:319–324

    Article  CAS  Google Scholar 

  15. van Baarsen LG, Lebre MC, van der Coelen D et al (2014) Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for nonresponse to anti-IL-17 therapy? Arthritis Res Ther 16:426

    Article  Google Scholar 

  16. Glatt S, Baeten D, Baker T et al (2018) Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic arthritis: evidence from preclinical experiments and a randomised placebo-controlled clinical trial that IL-17F contributes to human chronic tissue inflammation. Ann Rheum Dis 77:523–532

    Article  Google Scholar 

  17. Bilal J, Berlinberg A, Bhattacharjee S et al (2018) A systematic review and meta-analysis of the efficacy and safety of the Interleukin (IL)-12/23 and IL-17 inhibitors Ustekinumab, Secukinumab, Ixekizumab, Brodalumab, Guselkumab, and Tildrakizumab for the treatment of moderate to severe plaque psoriasis. J Dermatolog Treat 28:1–10. https://doi.org/10.1080/09546634.2017.1422591

    Google Scholar 

  18. Paulissen SM, van Hamburg JP, Davelaar N et al (2013) Synovial fibroblasts directly induce Th17 pathogenicity via the cyclooxygenase/prostaglandin E2 pathway, independent of IL-23. J Immunol 191:1364–1372

    Article  CAS  Google Scholar 

  19. Reinhardt A, Yevsa T, Worbs T et al (2016) Interleukin-23-dependent gamma/delta T cells produce Interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol 68:2476–2486

    Article  CAS  Google Scholar 

  20. Soare A, Weber S, Maul L et al (2018) Cutting edge: homeostasis of innate lymphoid cells is Imbalanced in psoriatic arthritis. J Immunol 200:1249–1254

    Article  CAS  Google Scholar 

  21. Cuthbert RJ, Fragkakis EM, Dunsmuir R et al (2017) Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol 69:1816–1822

    Article  CAS  Google Scholar 

  22. Lories RJ, McInnes IB (2012) Primed for inflammation: enthesis-resident T cells. Nat Med 18:1018–1019

    Article  CAS  Google Scholar 

  23. Sherlock JP, Joyce-Shaikh B, Turner SP et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med 18:1069–1076

    Article  CAS  Google Scholar 

  24. Kampylafka E, D’Oliveira I, Linz C et al (2017) FRI0625 Improvement of joint inflammation as assessed by MRI and power doppler ultrasound (PDUS) in an open label study in patients with active psoriatic arthritis treated with secukinumab (PSARTROS). Ann Rheum Dis 76:725–726

    Google Scholar 

  25. van der Heijde D, Gladman DD, Kishimoto M et al (2018) Efficacy and safety of Ixekizumab in patients with active psoriatic arthritis: 52-week results from a phase III study (SPIRIT-P1). J Rheumatol 45:367–377

    Article  Google Scholar 

  26. McInnes IB, Mease PJ, Ritchlin CT et al (2017) Secukinumab sustains improvement in signs and symptoms of psoriatic arthritis: 2 year results from the phase 3 FUTURE 2 study. Rheumatology (Oxf) 56:1993–2003

    Article  Google Scholar 

  27. Araujo E, Englbrecht M, Hoepken S et al (2017) OP0217 Ustekinumab is superior to TNF inhibitor treatment in resolving enthesitis in PSA patients with active enthesitis – results from the enthesial clearance in psoriatic arthritis (ECLIPSA) study. Ann Rheum Dis 76:142–142

    Google Scholar 

  28. Kavanaugh A, Mease PJ, Gomez-Reino JJ et al (2015) Longterm (52-week) results of a phase III randomized, controlled trial of apremilast in patients with psoriatic arthritis. J Rheumatol 42:479–488

    Article  CAS  Google Scholar 

  29. Nash P, Ohson K, Walsh J et al (2018) Early and sustained efficacy with apremilast monotherapy in biological-naive patients with psoriatic arthritis: a phase IIIB, randomised controlled trial (ACTIVE). Ann Rheum Dis 77:690–698

    Article  Google Scholar 

  30. van der Heijde D, Dougados M, Landewe R et al (2017) Sustained efficacy, safety and patient-reported outcomes of certolizumab pegol in axial spondyloarthritis: 4‑year outcomes from RAPID-axSpA. Rheumatology (Oxf) 56:1498–1509

    Article  Google Scholar 

  31. Matmati M, Jacques P, Maelfait J et al (2011) A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet 43:908–912

    Article  CAS  Google Scholar 

  32. De Wilde K, Martens A, Lambrecht S et al (2017) A20 inhibition of STAT1 expression in myeloid cells: a novel endogenous regulatory mechanism preventing development of enthesitis. Ann Rheum Dis 76:585–592

    Article  Google Scholar 

  33. Nair RP, Duffin KC, Helms C et al (2009) Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41:199–204

    Article  CAS  Google Scholar 

  34. Loft ND, Skov L, Rasmussen MK et al (2018) Genetic polymorphisms associated with psoriasis and development of psoriatic arthritis in patients with psoriasis. PLoS ONE 13:e192010

    Article  Google Scholar 

  35. Cascella R, Strafella C, Ragazzo M et al (2017) KIF3A and IL-4 are disease-specific biomarkers for psoriatic arthritis susceptibility. Oncotarget 8:95401–95411

    PubMed  PubMed Central  Google Scholar 

  36. Simon D, Faustini F, Kleyer A et al (2016) Analysis of periarticular bone changes in patients with cutaneous psoriasis without associated psoriatic arthritis. Ann Rheum Dis 75:660–666

    Article  CAS  Google Scholar 

  37. Kocijan R, Englbrecht M, Haschka J et al (2015) Quantitative and qualitative changes of bone in psoriasis and psoriatic arthritis patients. J Bone Miner Res 30:1775–1783

    Article  Google Scholar 

  38. Ogdie A, Harter L, Shin D et al (2017) The risk of fracture among patients with psoriatic arthritis and psoriasis: a population-based study. Ann Rheum Dis 76:882–885

    Article  Google Scholar 

  39. Amin TE, ElFar NN, Ghaly NR et al (2016) Serum level of receptor activator of nuclear factor kappa-B ligand in patients with psoriasis. Int J Dermatol 55:e227–e233

    Article  CAS  Google Scholar 

  40. Paine A, Ritchlin C (2018) Altered bone remodeling in psoriatic disease: new insights and future directions. Calcif Tissue Int. https://doi.org/10.1007/s00223-017-0380-2

    Article  PubMed  Google Scholar 

  41. Kotake S, Udagawa N, Takahashi N et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  CAS  Google Scholar 

  42. Zheng L, Wang W, Ni J et al (2017) Role of autophagy in tumor necrosis factor-alpha-induced apoptosis of osteoblast cells. J Investig Med 65:1014–1020

    Article  Google Scholar 

  43. Kim TH, Stone M, Payne U et al (2005) Cartilage biomarkers in ankylosing spondylitis: relationship to clinical variables and treatment response. Arthritis Rheum 52:885–891

    Article  CAS  Google Scholar 

  44. Pedersen SJ, Sorensen IJ, Garnero P et al (2011) ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis treated with TNFalpha inhibitors. Ann Rheum Dis 70:1375–1381

    Article  CAS  Google Scholar 

  45. Gudmann NS, Munk HL, Christensen AF et al (2016) Chondrocyte activity is increased in psoriatic arthritis and axial spondyloarthritis. Arthritis Res Ther 18:141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Simon or A. J. Hueber PhD.

Ethics declarations

Interessenkonflikt

D. Simon, E. Kampylafka und A.J. Hueber geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

J. Distler, Erlangen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, D., Kampylafka, E. & Hueber, A.J. Neue molekulare Mechanismen in der Pathophysiologie der Psoriasisarthritis. Z Rheumatol 77, 776–782 (2018). https://doi.org/10.1007/s00393-018-0503-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-018-0503-9

Schlüsselwörter

Keywords

Navigation