Skip to main content
Log in

Meta-analysis of circulating adiponectin, leptin, and resistin levels in systemic sclerosis

Metaanalyse über die Plasmaspiegel von zirkulierendem Adiponectin, Leptin und Resistin bei systemischer Sklerose

  • Originalien
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Abstract

Objective

We aimed to evaluate the relationship between circulating blood adipokine levels and systemic sclerosis (SSc).

Methods

We conducted a meta-analysis on serum/plasma adiponectin, leptin, or resistin levels in patients with SSc and controls, and performed a subgroup analysis based on ethnicity and/or disease type.

Results

Eleven studies (511 patients with SSc and 341 controls) were included in the meta-analysis. Meta-analysis revealed that adiponectin levels were significantly lower in patients with SSc than in controls (standardized mean differences [SMD] = −0.638; 95 % confidence intervals [CI] = −1.154, −0.122; P = 0.015). Stratification by ethnicity showed a low adiponectin level associated with SSc in Caucasians (SMD = −0.439; 95 % CI = −1.092, −0.213; P = 0.187) and Asians (SMD = −1.006; 95 % CI = −2.031, −0.019; P = 0.055), although this result was not statistically significant. Stratification by disease type revealed that the adiponectin level was significantly lower in the diffuse SSc, but not limited SSc, group than in the control (diffuse: SMD = −1.445; 95 % CI = −2.276, −0.614; P = 0.001; limited: SMD = 0.188; 95 % CI = −0.064, 0.439; P = 0.144). Meta-analysis showed no association between leptin levels and SSc (SMD = −0.029; 95 % CI = −1.362, 1.304; P = 0.966), and no association between resistin levels and SSc (SMD = 0.202; 95 % CI = −0.091, 0.496; P = 0.177).

Conclusions

Our meta-analysis revealed a significantly lower circulating adiponectin level in patients with SSc than in controls. This difference was apparent in the diffuse type of SSc, but not in the limited type. However, circulating leptin and resistin levels were not different between patients with SSc and healthy controls.

Zusammenfassung

Ziel

Ziel war es, die Beziehung der Plasmaspiegel von zirkulierendem Adiponectin und systemischer Sklerose (SSc) zu beurteilen.

Methoden

Die Autoren führten eine Metaanalyse über Serum-/Plasmaspiegel von Adiponectin, Leptin oder Resistin bei Patienten mit SSc und einer Kontrollgruppe durch. Es erfolgte eine Subgruppenanalyse, die auf Ethnizität und/oder Krankheitstyp basierte.

Ergebnisse

Elf Studien (511 Patienten mit SSc und 341 Kontrollpersonen) wurden in die Metaanalyse eingeschlossen. Die Metaanalyse zeigte, dass der Adiponectinspiegel bei Patienten mit SSc signifikant niedriger war als in der Kontrollgruppe (standardisierte Mittelwertsdifferenz [SMD] = −0,638; 95 % Konfidenzintervall [CI] = −1,154 bis −0,122; p = 0,015). Die Stratifizierung nach Ethnizität zeigte eine Assoziation zwischen einem niedrigen Adiponectinspiegel und Personen mit weißer Hautfarbe (SMD = −0,439; 95 % CI = −1,092 bis −0.213; p = 0.187) sowie Asiaten (SMD = −1,006; 95 % CI = −2,031 bis −0.019; p = 0,055), obwohl dieses Ergebnis nicht statistisch signifikant war. Die Stratifizierung nach Krankheitstyp zeigte, dass der Adiponectinspiegel signifikant niedriger in der Gruppe mit diffuser, jedoch nicht mit limitierter SSc war als in der Kontrollgruppe (diffuse SSc: SMD = −1,445; 95 % CI = −2,276 bis −0,614; p = 0,001; limitierte SSc: SMD = 0,188; 95 % CI = −0,064 bis 0,439; p = 0,144). Die Metaanalyse zeigte keinen Zusammenhang zwischen dem Leptinspiegel und SSc (SMD = −0,029; 95 % CI = −1,362 bis 1,304; p = 0,966) sowie keinen Zusammenhang zwischen dem Resistinspiegel und SSc (SMD = 0,202; 95 % CI = −0,091 bis 0,496; p = 0,177).

Schlussfolgerung

Unsere Metaanalyse zeigte einen signifikant niedrigeren Plasmaspiegel von Adiponectin bei Patienten mit SSc als in der Kontrollgruppe. Dieser Unterschied war bei der diffusen SSc ersichtlich, aber nicht bei der limitierten SSc. Bei den Plasmaspiegeln von zirkulierendem Leptin und Resistin gab es jedoch keinen Unterschied zwischen Patienten mit SSc und der Kontrollgruppe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gabrielli A, Avvedimento EV, Krieg Scleroderma T (2009) Scleroderma. N Engl J Med 360(19):1989–2003

    Article  CAS  PubMed  Google Scholar 

  2. Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9(2):191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shehzad A, Iqbal W, Shehzad O, Lee YS (2012) Adiponectin: regulation of its production and its role in human diseases. Hormones 11(1):8–20

    PubMed  Google Scholar 

  4. Kelesidis T, Kelesidis I, Chou S, Mantzoros CS (2010) Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med 152(2):93–100

    Article  PubMed  PubMed Central  Google Scholar 

  5. Conde J, Scotece M, Gómez R, López V, Gómez-Reino JJ, Lago F et al (2011) Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. Biofactors 37(6):413–420

    Article  CAS  PubMed  Google Scholar 

  6. Fernández-Riejos P, Najib S, Santos-Alvarez J, Martín-Romero C, Pérez-Pérez A, González-Yanes C et al (2010) Role of leptin in the activation of immune cells. Mediators Inflamm 2010:Article ID 568343. doi:10.1155/2010/568343

    Article  Google Scholar 

  7. Gabay C, Dreyer M, Pellegrinelli N, Chicheportiche R, Meier CA (2001) Leptin directly induces the secretion of interleukin 1 receptor antagonist in human monocytes. J Clin Endocrinol Metab 86(2):783–791

    CAS  PubMed  Google Scholar 

  8. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A (2005) Resistin, an adipokine with potent proinflammatory properties. J Immunol 174(9):5789–5795

    Article  CAS  PubMed  Google Scholar 

  9. Olewicz-Gawlik A, Danczak-Pazdrowska A, Kuznar-Kaminska B, Batura-Gabryel H, Katulska K, Wojciech S et al (2015) Circulating adipokines and organ involvement in patients with systemic sclerosis. Acta Reumatol Port 40(2):156–162

    CAS  PubMed  Google Scholar 

  10. Winsz-Szczotka K, Kuznik-Trocha K, Komosinska-Vassev K, Kucharz E, Kotulska A, Olczyk K (2014) Relationship between adiponectin, leptin, IGF-1 and total lipid peroxides plasma concentrations in patients with systemic sclerosis: possible role in disease development. Int J Rheum Dis. doi:10.1111/1756-185x.12332

    PubMed  Google Scholar 

  11. Budulgan M, Dilek B, Dag SB, Batmaz I, Yildiz I, Sariyildiz MA et al (2014) Relationship between serum leptin level and disease activity in patients with systemic sclerosis. Clin Rheumatol 33(3):335–339

    Article  PubMed  Google Scholar 

  12. Masui Y, Asano Y, Akamata K, Aozasa N, Noda S, Taniguchi T et al (2014) Serum resistin levels: a possible correlation with pulmonary vascular involvement in patients with systemic sclerosis. Rheumatol Int 34(8):1165–1170

    Article  CAS  PubMed  Google Scholar 

  13. Lakota K, Wei J, Carns M, Hinchcliff M, Lee J, Whitfield ML et al (2012) Levels of adiponectin, a marker for PPAR-gamma activity, correlate with skin fibrosis in systemic sclerosis: potential utility as biomarker? Arthritis Res Ther 14(3):R102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomcik M, Arima K, Hulejova H, Kuklova M, Filkova M, Braun M et al (2012) Adiponectin relation to skin changes and dyslipidemia in systemic sclerosis. Cytokine 58(2):165–168

    Article  CAS  PubMed  Google Scholar 

  15. Arakawa H, Jinnin M, Muchemwa FC, Makino T, Kajihara I, Makino K et al (2011) Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients. Exp Dermatol 20(9):764–766

    Article  CAS  PubMed  Google Scholar 

  16. Masui Y, Asano Y, Shibata S, Noda S, Aozasa N, Akamata K et al (2012) Serum adiponectin levels inversely correlate with the activity of progressive skin sclerosis in patients with diffuse cutaneous systemic sclerosis. J Eur Acad Dermatol Venereol 26(3):354–360

    Article  CAS  PubMed  Google Scholar 

  17. Pehlivan Y, Onat AM, Ceylan N, Turkbeyler IH, Buyukhatipoglu H, Comez G et al (2012) Serum leptin, resistin and TNF-alpha levels in patients with systemic sclerosis: the role of adipokines in scleroderma. Int J Rheum Dis 15(4):374–379

    Article  CAS  PubMed  Google Scholar 

  18. Kotulska A, Kucharz EJ, Brzezinska-Wcislo L, Wadas U (2001) A decreased serum leptin level in patients with systemic sclerosis. Clin Rheumatol 20(4):300–302

    Article  CAS  PubMed  Google Scholar 

  19. Riccieri V, Stefanantoni K, Vasile M, Macrì V, Sciarra I, Iannace N et al (2011) Abnormal plasma levels of different angiogenic molecules are associated with different clinical manifestations in patients with systemic sclerosis. Clin Exp Rheumatol 29(2 Suppl 65):46–52

    Google Scholar 

  20. Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2009) Associations between osteoprotegerin polymorphisms and bone mineral density: a meta-analysis. Mol Biol Rep 37(1):227–234

    Article  PubMed  Google Scholar 

  21. Lee YH, Rho YH, Choi SJ, Ji JD, Song GG (2007) PADI4 polymorphisms and rheumatoid arthritis susceptibility: a meta-analysis. Rheumatol Int 27(9):827–833

    Article  CAS  PubMed  Google Scholar 

  22. Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2010) Induction and maintenance therapy for lupus nephritis: a systematic review and meta-analysis. Lupus 19(6):703–710

    Article  CAS  PubMed  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M et al (2000) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

    Google Scholar 

  26. Egger M, Smith GD, Phillips AN (1997) Meta-analysis: principles and procedures. BMJ 315(7121):1533–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  28. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  29. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463

    Article  CAS  PubMed  Google Scholar 

  31. Masui Y, Asano Y, Takahashi T, Shibata S, Akamata K, Aozasa N et al (2013) Clinical significance of monitoring serum adiponectin levels during intravenous pulse cyclophosphamide therapy in interstitial lung disease associated with systemic sclerosis. Mod Rheumatol 23(2):323–329

    Article  CAS  PubMed  Google Scholar 

  32. Fang F, Liu L, Yang Y, Tamaki Z, Wei J, Marangoni RG et al (2012) The adipokine adiponectin has potent anti-fibrotic effects mediated via adenosine monophosphate-activated protein kinase: novel target for fibrosis therapy. Arthritis Res Ther 14(5):R229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ouedraogo R, Gong Y, Berzins B, Wu X, Mahadev K, Hough K et al (2007) Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. J Clin Investig 117(6):1718–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schöndorf T, Maiworm A, Emmison N, Forst T, Pfützner A (2005) Biological background and role of adiponectin as marker for insulin resistance and cardiovascular risk. Clin Lab 51(9–10):489–494

    PubMed  Google Scholar 

  35. Gómez R, Conde J, Scotece M, Gómez-Reino JJ, Lago F, Gualillo O (2011) What’s new in our understanding of the role of adipokines in rheumatic diseases? Nat Rev Rheumatol 7(9):528–536

    Article  PubMed  Google Scholar 

  36. Otero M, Lago R, Gomez R, Dieguez C, Lago F, Gómez-Reino J et al (2006) Towards a pro-inflammatory and immunomodulatory emerging role of leptin. Rheumatology 45(8):944–950

    Article  CAS  PubMed  Google Scholar 

  37. Iikuni N, Lam QL, Lu L, Matarese G, La Cava A (2008) Leptin and inflammation. Curr Immunol Rev 4(2):70–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T‑cell immune response and reverses starvation-induced immunosuppression. Nature 394(6696):897–901

    Article  CAS  PubMed  Google Scholar 

  39. Wronkowitz N, Romacho T, Sell H, Eckel J (2014) Adipose tissue dysfunction and inflammation in cardiovascular disease. Front Horm Res 43:79–92

    PubMed  Google Scholar 

Download references

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Lee MD, PhD.

Ethics declarations

Conflict of interest

Y.H. Lee and G.G. Song state that they have no competing interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Redaktion

U. Müller-Ladner, Bad Nauheim

U. Lange, Bad Nauheim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.H., Song, G.G. Meta-analysis of circulating adiponectin, leptin, and resistin levels in systemic sclerosis. Z Rheumatol 76, 789–797 (2017). https://doi.org/10.1007/s00393-016-0172-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-016-0172-5

Keywords

Schlüsselwörter

Navigation