Skip to main content
Log in

OVERLOAD of joints and its role in osteoarthritis

Towards understanding and preventing progression of primary osteoarthritis. English version

  • Neues aus der Forschung
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Robert-Koch-Institut (2007) Gesundheit in Deutschland. In

  2. Robert-Koch-Institut (2012) Beiträge zur Gesundheitsberichterstattung des Bundes. In

  3. Felson DT, Naimark A, Anderson J et al (1987) The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 30:914–918

    Article  CAS  PubMed  Google Scholar 

  4. Beaupre GS, Stevens SS, Carter DR (2000) Mechanobiology in the development, maintenance, and degeneration of articular cartilage. J Rehabil Res Dev 37:145–151

    CAS  PubMed  Google Scholar 

  5. Grodzinsky AJ, Levenston ME, Jin M, Frank EH (2000) Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng 2:691–713

    Article  CAS  PubMed  Google Scholar 

  6. Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97

    Article  CAS  PubMed  Google Scholar 

  7. Maniwa S, Nishikori T, Furukawa S et al (2001) Alteration of collagen network and negative charge of articular cartilage surface in the early stage of experimental osteoarthritis. Arch Orthop Trauma Surg 121:181–185

    Article  CAS  PubMed  Google Scholar 

  8. Otterness IG, Weiner E, Swindell AC et al (2001) An analysis of 14 molecular markers for monitoring osteoarthritis. Relationship of the markers to clinical end-points. Osteoarthritis Cartilage 9:224–231

    Article  CAS  PubMed  Google Scholar 

  9. Felson DT, Lawrence RC, Dieppe PA et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646

    Article  CAS  PubMed  Google Scholar 

  10. Van de Velde SK, Bingham JT, Hosseini A et al (2009) Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum 60:3693–3702

    Article  Google Scholar 

  11. Lotz MK, Kraus VB (2010) New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 12:211

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goldring MB, Otero M (2011) Inflammation in osteoarthritis. Curr Opin Rheumatol 23:471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Litwic A, Edwards MH, Dennison EM, Cooper C (2013) Epidemiology and burden of osteoarthritis. Br Med Bull (Epub ahead of print)

  14. Ratzlaff CR, Koehoorn M, Cibere J, Kopec JA (2012) Is lifelong knee joint force from work, home, and sport related to knee osteoarthritis? Int J Rheumatol 2012:584193

    Article  PubMed  PubMed Central  Google Scholar 

  15. Radin EL, Paul IL, Rose RM (1972) Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet 1:519–522

    Article  CAS  PubMed  Google Scholar 

  16. Radin ER, Paul IL, Rose RM (1972) Pathogenesis of primary osteoarthritis. Lancet 1:1395–1396

    Article  CAS  PubMed  Google Scholar 

  17. Felson DT (1993) The course of osteoarthritis and factors that affect it. Rheum Dis Clin North Am 19:607–615

    CAS  PubMed  Google Scholar 

  18. Bellido M, Lugo L, Roman-Blas JA et al (2010) Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther 12:R152

    Article  PubMed  PubMed Central  Google Scholar 

  19. Intema F, Sniekers YH, Weinans H et al (2010) Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis. J Bone Miner Res 25:1650–1657

    Article  PubMed  Google Scholar 

  20. Karsdal MA, Leeming DJ, Dam EB et al (2008) Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage 16:638–646

    Article  CAS  PubMed  Google Scholar 

  21. Grynpas MD, Alpert B, Katz I et al (1991) Subchondral bone in osteoarthritis. Calcif Tissue Int 49:20–26

    Article  CAS  PubMed  Google Scholar 

  22. Burr DB (2005) Increased biological activity of subchondral mineralized tissues underlies the progressive deterioration of articular cartilage in osteoarthritis. J Rheumatol 32:1156–1158 (discussion 1158–1159)

    PubMed  Google Scholar 

  23. Burr DB, Gallant MA (2012) Bone remodelling in osteoarthritis. Nat Rev Rheumatol 8:665–673

    Article  CAS  PubMed  Google Scholar 

  24. Brown TD, Radin EL, Martin RB, Burr DB (1984) Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech 17:11–24

    Article  CAS  PubMed  Google Scholar 

  25. Orth P, Cucchiarini M, Wagenpfeil S et al. (2014) PTH [1-34]-induced alterations of the subchondral bone provoke early osteoarthritis. Osteoarthritis Cartilage 22:813–21

    Article  CAS  PubMed  Google Scholar 

  26. Vincent TL (2013) Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr Opin Pharmacol 13:449–454

    Article  CAS  PubMed  Google Scholar 

  27. Guilak F, Alexopoulos LG, Upton ML et al (2006) The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann N Y Acad Sci 1068:498–512

    Article  CAS  PubMed  Google Scholar 

  28. Goldring SR, Goldring MB (2004) The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res 427 Suppl:27–36

    Article  Google Scholar 

  29. O’Conor CJ, Leddy HA, Benefield HC et al (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A 111:1316–1321

    Article  Google Scholar 

  30. Beller G, Belavy DL, Sun L et al (2011) WISE-2005: bed-rest induced changes in bone mineral density in women during 60 days simulated microgravity. Bone 49:858–866

    Article  PubMed  Google Scholar 

  31. Lang T, LeBlanc A, Evans H et al (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012

    Article  PubMed  Google Scholar 

  32. Setton LA, Mow VC, Muller FJ et al (1997) Mechanical behavior and biochemical composition of canine knee cartilage following periods of joint disuse and disuse with remobilization. Osteoarthritis Cartilage 5:1–16

    Article  CAS  PubMed  Google Scholar 

  33. Palmoski M, Perricone E, Brandt KD (1979) Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis Rheum 22:508–517

    Article  CAS  PubMed  Google Scholar 

  34. Hunziker EB (2004) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463

    Article  Google Scholar 

  35. Glyn-Jones S, Palmer AJ, Agricola R et al (2015) Osteoarthritis. Lancet (Epub ahead of print)

  36. Hennig A, Abate J (2007) Osteochondral allografts in the treatment of articular cartilage injuries of the knee. Sports Med Arthrosc 15:126–132

    Article  PubMed  Google Scholar 

  37. Heijink A, Gomoll A, Madry H et al (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20:423–435

    Article  PubMed  Google Scholar 

  38. Miyazaki T, Wada M, Kawahara H et al (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61:617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma L, Song J, Dunlop D et al (2010) Varus and valgus alignment and incident and progressive knee osteoarthritis. Ann Rheum Dis 69:1940–1945

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Adam Trepczynski and Heide Boeth for designing figures and providing insights related to our research approach. This work was supported by a grant from the Bundesministerium für Bildung und Forschung (OVERLOAD–PrevOP consortium). The Berlin-Brandenburg School for Regenerative Therapies is funded by the Deutsche Forschungsgemeinschaft, GSC 203.

Compliance with ethical guidelines

Conflict of interest. B.M. Willie, T. Pap, C. Perka, C.O. Schmidt, F. Eckstein, A. Arampatzis, H.-C. Hege, H. Madry, A. Vortkamp, and G.N. Duda state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.M. Willie.

Additional information

Study of Health in Pomerania (SHIP) and National Institute of Health (NIH).

The German version of this article is published in Z Rheumatol 2015, 74:618–621

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willie, B., Pap, T., Perka, C. et al. OVERLOAD of joints and its role in osteoarthritis. Z Rheumatol 76 (Suppl 1), 1–4 (2017). https://doi.org/10.1007/s00393-014-1561-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-014-1561-2

Keywords

Navigation