Skip to main content
Log in

Renal sympathetic denervation for treatment of ventricular arrhythmias: a review on current experimental and clinical findings

  • Review
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Ventricular arrhythmias (VAs) remain the major cause of mortality and sudden cardiac death (SCD) in almost all forms of heart disease. Despite so many therapeutic advances, such as pharmacological therapies, catheter ablation, and arrhythmia surgery, management of VAs remains a great challenge for cardiologists. Evidence from histological studies and from direct nerve activity recordings have suggested that increased sympathetic nerve density and activity contribute to the generation of VAs and SCD. It is well known that renal sympathetic nerve (RSN), either afferent component or efferent component, plays an important role in modulation of central sympathetic activity. We have recently shown that RSN activation by electrical stimulation significantly increases cardiac and systemic sympathetic activity and promotes the incidence of acute ischemia-induced VAs, suggesting RSN has a role in the development of VAs. Initial experience of RSN denervation (RDN) in patients with resistant hypertension showed that this novel and minimally invasive device-based approach significantly reduced not only kidney but also whole-body norepinephrine spillover. In addition, experimental studies find that left stellate ganglion nerve activity is significantly decreased after RDN. Based on these observations, it is reasonable to conclude that RDN may be an effective therapy for the management of VAs. Indeed, RDN has provided a protection against VAs in both animal models and patients. In this article, we review the role of the RSN in the generation of VAs and SCD and the role of RDN as a potential treatment strategy for VAs and SCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

APD:

Action potential duration

ERP:

Effective refractory period

LSG:

Left stellate ganglion

RDN:

Renal sympathetic denervation

RSN:

Renal sympathetic nerve

SCD:

Sudden cardiac death

VAs:

Ventricular arrhythmias

VT:

Ventricular tachycardia

References

  1. John RM, Tedrow UB, Koplan BA, Albert CM, Epstein LM, Sweeney MO, Miller AL, Michaud GF, Stevenson WG (2012) Ventricular arrhythmias and sudden cardiac death. Lancet 380(9852):1520–1529. doi:10.1016/S0140-6736(12)61413-5

    Article  PubMed  Google Scholar 

  2. Chugh SS, Reinier K, Teodorescu C, Evanado A, Kehr E, Al Samara M, Mariani R, Gunson K, Jui J (2008) Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis 51(3):213–228. doi:10.1016/j.pcad.2008.06.003

    Article  PubMed Central  PubMed  Google Scholar 

  3. Aliot EM, Stevenson WG, Almendral-Garrote JM, Bogun F, Calkins CH, Delacretaz E, Della Bella P, Hindricks G, Jais P, Josephson ME, Kautzner J, Kay GN, Kuck KH, Lerman BB, Marchlinski F, Reddy V, Schalij MJ, Schilling R, Soejima K, Wilber D, European Heart Rhythm A, Registered Branch of the European Society of C, Heart Rhythm S, American College of C, American Heart A (2009) EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Heart rhythm 6(6):886–933. doi:10.1016/j.hrthm.2009.04.030

    Article  PubMed  Google Scholar 

  4. Winterfield JR, Mahapatra S, Wilber DJ (2013) Catheter ablation of ventricular arrhythmias: targets, tactics, and tools. Curr Opin Cardiol 28(3):344–353. doi:10.1097/HCO.0b013e328360443f

    Article  PubMed  Google Scholar 

  5. Shen MJ, Zipes DP (2014) Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 114(6):1004–1021. doi:10.1161/CIRCRESAHA.113.302549

    Article  CAS  PubMed  Google Scholar 

  6. Hayase J, Patel J, Narayan SM, Krummen DE (2013) Percutaneous stellate ganglion block suppressing VT and VF in a patient refractory to VT ablation. J Cardiovasc Electrophysiol 24(8):926–928. doi:10.1111/jce.12138

    Article  PubMed  Google Scholar 

  7. Patel RA, Priore DL, Szeto WY, Slevin KA (2011) Left stellate ganglion blockade for the management of drug-resistant electrical storm. Pain Med 12(8):1196–1198. doi:10.1111/j.1526-4637.2011.01167.x

    Article  PubMed  Google Scholar 

  8. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373(9671):1275–1281. doi:10.1016/S0140-6736(09)60566-3

    Article  PubMed  Google Scholar 

  9. Symplicity HTNI (2011) Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 57(5):911–917. doi:10.1161/HYPERTENSIONAHA.110.163014

    Article  Google Scholar 

  10. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD (2009) Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 361(9):932–934. doi:10.1056/NEJMc0904179

    Article  CAS  PubMed  Google Scholar 

  11. Krum H, Schlaich MP, Sobotka PA, Bohm M, Mahfoud F, Rocha-Singh K, Katholi R, Esler MD (2014) Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 383(9917):622–629. doi:10.1016/S0140-6736(13)62192-3

    Article  PubMed  Google Scholar 

  12. Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, Hamady M, Hughes AD, Sever PS, Sobotka PA, Francis DP (2013) First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol 162(3):189–192. doi:10.1016/j.ijcard.2012.09.019

    Article  PubMed  Google Scholar 

  13. Bohm M, Ewen S, Kindermann I, Linz D, Ukena C, Mahfoud F (2014) Renal denervation and heart failure. Eur J Heart Fail 16(6):608–613. doi:10.1002/ejhf.83

    Article  PubMed  Google Scholar 

  14. Kiuchi MG, Maia GL, de Queiroz Carreira MA, Kiuchi T, Chen S, Andrea BR, Graciano ML, Lugon JR (2013) Effects of renal denervation with a standard irrigated cardiac ablation catheter on blood pressure and renal function in patients with chronic kidney disease and resistant hypertension. Eur Heart J 34(28):2114–2121. doi:10.1093/eurheartj/eht200

    Article  PubMed  Google Scholar 

  15. Witkowski A, Prejbisz A, Florczak E, Kadziela J, Sliwinski P, Bielen P, Michalowska I, Kabat M, Warchol E, Januszewicz M, Narkiewicz K, Somers VK, Sobotka PA, Januszewicz A (2011) Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 58(4):559–565. doi:10.1161/HYPERTENSIONAHA.111.173799

    Article  CAS  PubMed  Google Scholar 

  16. Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, Hoppe UC, Vonend O, Rump LC, Sobotka PA, Krum H, Esler M, Bohm M (2011) Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 123(18):1940–1946. doi:10.1161/CIRCULATIONAHA.110.991869

    Article  CAS  PubMed  Google Scholar 

  17. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, Shirokova N, Karaskov A, Mittal S, Steinberg JS (2012) A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 60(13):1163–1170. doi:10.1016/j.jacc.2012.05.036

    Article  PubMed  Google Scholar 

  18. Pokushalov E, Romanov A, Katritsis DG, Artyomenko S, Bayramova S, Losik D, Baranova V, Karaskov A, Steinberg JS (2014) Renal denervation for improving outcomes of catheter ablation in patients with atrial fibrillation and hypertension: early experience. Heart rhythm 11(7):1131–1138. doi:10.1016/j.hrthm.2014.03.055

    Article  PubMed  Google Scholar 

  19. Linz D, van Hunnik A, Ukena C, Ewen S, Mahfoud F, Schirmer SH, Lenski M, Neuberger HR, Schotten U, Bohm M (2014) Renal denervation: effects on atrial electrophysiology and arrhythmias. Clin Res Cardiol 103(10):764–774. doi:10.1007/s00392-014-0695-1

    Article  Google Scholar 

  20. Zhang M, Tao H, Shi KH (2014) Renal denervation as a friend of catheter ablation in patients with atrial fibrillation and hypertension. Clin Res Cardiol. doi:10.1007/s00392-014-0752-9

    Google Scholar 

  21. Linz D, Wirth K, Ukena C, Mahfoud F, Poss J, Linz B, Bohm M, Neuberger HR (2013) Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Heart rhythm 10(10):1525–1530. doi:10.1016/j.hrthm.2013.07.015

    Article  PubMed  Google Scholar 

  22. Huang B, Yu L, He B, Lu Z, Wang S, He W, Yang K, Liao K, Zhang L, Jiang H (2014) Renal sympathetic denervation modulates ventricular electrophysiology and has a protective effect on ischaemia-induced ventricular arrhythmia. Exp Physiol 99(11):1467–1477. doi:10.1113/expphysiol.2014.082057

    Article  PubMed  Google Scholar 

  23. Guo Z, Zhao Q, Deng H, Tang Y, Wang X, Dai Z, Xiao J, Wan P, Wang X, Huang H, Huang C (2014) Renal sympathetic denervation attenuates the ventricular substrate and electrophysiological remodeling in dogs with pacing-induced heart failure. Int J Cardiol 175(1):185–186. doi:10.1016/j.ijcard.2014.04.189

    Article  PubMed  Google Scholar 

  24. Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR, Eick C, Sobotka PA, Gawaz M, Bohm M (2012) Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol 101(1):63–67. doi:10.1007/s00392-011-0365-5

    Article  PubMed  Google Scholar 

  25. Hoffmann BA, Steven D, Willems S, Sydow K (2013) Renal sympathetic denervation as an adjunct to catheter ablation for the treatment of ventricular electrical storm in the setting of acute myocardial infarction. J Cardiovasc Electrophysiol 24(12):E21. doi:10.1111/jce.12282

    Article  PubMed  Google Scholar 

  26. Staico R, Armaganijan L, Moreira D, Medeiros P, Melo J, Lopes R, Ribamar Costa J, Abizaid A (2013) Renal sympathetic denervation and ventricular arrhythmias: a case of electrical storm with multiple renal arteries. EuroIntervention 10(1):166. doi:10.4244/EIJV10I1A25

    Article  Google Scholar 

  27. Remo BF, Preminger M, Bradfield J, Mittal S, Boyle N, Gupta A, Shivkumar K, Steinberg JS, Dickfeld T (2014) Safety and efficacy of renal denervation as a novel treatment of ventricular tachycardia storm in patients with cardiomyopathy. Heart rhythm 11(4):541–546. doi:10.1016/j.hrthm.2013.12.038

    Article  PubMed Central  PubMed  Google Scholar 

  28. Scholz EP, Raake P, Thomas D, Vogel B, Katus HA, Blessing E (2014) Rescue renal sympathetic denervation in a patient with ventricular electrical storm refractory to endo- and epicardial catheter ablation. Clin Res Cardiol. doi:10.1007/s00392-014-0749-4

    Google Scholar 

  29. Hilbert S, Rogge C, Papageorgiou P, Hindricks G, Bollmann A (2014) Successful single-sided renal denervation in drug-resistant hypertension and ventricular tachycardia. Clin Res Cardiol. doi:10.1007/s00392-014-0790-3

    PubMed  Google Scholar 

  30. Kosiuk J, Hilbert S, Pokushalov E, Hindricks G, Steinberg JS, Bollmann A (2014) Renal denervation for treatment of cardiac arrhythmias: state of the art and future directions. J Cardiovasc Electrophysiol. doi:10.1111/jce.12553

    PubMed  Google Scholar 

  31. Zipes DP (2008) Heart-brain interactions in cardiac arrhythmias: role of the autonomic nervous system. Cleve Clin J Med 75(Suppl 2):S94–S96

    Article  PubMed  Google Scholar 

  32. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS (2000) Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101(16):1960–1969

    Article  CAS  PubMed  Google Scholar 

  33. Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC, Chen PS (2000) Nerve sprouting and sudden cardiac death. Circ Res 86(7):816–821

    Article  CAS  PubMed  Google Scholar 

  34. Swissa M, Zhou S, Gonzalez-Gomez I, Chang CM, Lai AC, Cates AW, Fishbein MC, Karagueuzian HS, Chen PS, Chen LS (2004) Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol 43(5):858–864. doi:10.1016/j.jacc.2003.07.053

    Article  PubMed  Google Scholar 

  35. Liu YB, Wu CC, Lu LS, Su MJ, Lin CW, Lin SF, Chen LS, Fishbein MC, Chen PS, Lee YT (2003) Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ Res 92(10):1145–1152. doi:10.1161/01.RES.0000072999.51484.92

    Article  CAS  PubMed  Google Scholar 

  36. Zhou S, Jung BC, Tan AY, Trang VQ, Gholmieh G, Han SW, Lin SF, Fishbein MC, Chen PS, Chen LS (2008) Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart rhythm 5(1):131–139. doi:10.1016/j.hrthm.2007.09.007

    Article  PubMed  Google Scholar 

  37. Ng GA, Brack KE, Patel VH, Coote JH (2007) Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res 73(4):750–760. doi:10.1016/j.cardiores.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  38. Ng GA, Mantravadi R, Walker WH, Ortin WG, Choi BR, de Groat W, Salama G (2009) Sympathetic nerve stimulation produces spatial heterogeneities of action potential restitution. Heart rhythm 6(5):696–706. doi:10.1016/j.hrthm.2009.01.035

    Article  PubMed  Google Scholar 

  39. Steinbeck G, Andresen D, Bach P, Haberl R, Oeff M, Hoffmann E, von Leitner ER (1992) A comparison of electrophysiologically guided antiarrhythmic drug therapy with beta-blocker therapy in patients with symptomatic, sustained ventricular tachyarrhythmias. N Engl J Med 327(14):987–992. doi:10.1056/NEJM199210013271404

    Article  CAS  PubMed  Google Scholar 

  40. Antz M, Cappato R, Kuck KH (1995) Metoprolol versus sotalol in the treatment of sustained ventricular tachycardia. J Cardiovasc Pharmacol 26(4):627–635

    Article  CAS  PubMed  Google Scholar 

  41. Schwartz PJ, Snebold NG, Brown AM (1976) Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am J Cardiol 37(7):1034–1040

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz PJ, Motolese M, Pollavini G, Lotto A, Ruberti U, Trazzi R, Bartorelli C, Zanchetti A, TISDPG (1992) Prevention of sudden cardiac death after a first myocardial infarction by pharmacologic or surgical antiadrenergic interventions. J Cardiovasc Electrophysiol 3:2–16

    Article  Google Scholar 

  43. Wilde AA, Bhuiyan ZA, Crotti L, Facchini M, De Ferrari GM, Paul T, Ferrandi C, Koolbergen DR, Odero A, Schwartz PJ (2008) Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N Engl J Med 358(19):2024–2029. doi:10.1056/NEJMoa0708006

    Article  CAS  PubMed  Google Scholar 

  44. Schwartz PJ, Locati EH, Moss AJ, Crampton RS, Trazzi R, Ruberti U (1991) Left cardiac sympathetic denervation in the therapy of congenital long QT syndrome. A worldwide report. Circulation 84(2):503–511

    CAS  Google Scholar 

  45. Schneider HE, Steinmetz M, Krause U, Kriebel T, Ruschewski W, Paul T (2013) Left cardiac sympathetic denervation for the management of life-threatening ventricular tachyarrhythmias in young patients with catecholaminergic polymorphic ventricular tachycardia and long QT syndrome. Clin Res Cardiol 102(1):33–42. doi:10.1007/s00392-012-0492-7

    Article  PubMed Central  PubMed  Google Scholar 

  46. Lopshire JC, Zhou X, Dusa C, Ueyama T, Rosenberger J, Courtney N, Ujhelyi M, Mullen T, Das M, Zipes DP (2009) Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120(4):286–294. doi:10.1161/CIRCULATIONAHA.108.812412

    Article  PubMed  Google Scholar 

  47. Blomberg S, Ricksten SE (1988) Thoracic epidural anaesthesia decreases the incidence of ventricular arrhythmias during acute myocardial ischaemia in the anaesthetized rat. Acta Anaesthesiol Scand 32(3):173–178

    Article  CAS  PubMed  Google Scholar 

  48. Liao K, Yu L, He B, Huang B, Yang K, Saren G, Wang S, Zhou X, Jiang H (2014) Carotid baroreceptor stimulation prevents arrhythmias induced by acute myocardial infarction through autonomic modulation. J Cardiovasc Pharmacol 64(5):431–437. doi:10.1097/FJC.0000000000000135

    Article  CAS  PubMed  Google Scholar 

  49. Schlaich MP, Sobotka PA, Krum H, Whitbourn R, Walton A, Esler MD (2009) Renal denervation as a therapeutic approach for hypertension: novel implications for an old concept. Hypertension 54(6):1195–1201. doi:10.1161/HYPERTENSIONAHA.109.138610

    Article  CAS  PubMed  Google Scholar 

  50. Schlaich MP, Hering D, Sobotka PA, Krum H, Esler MD (2012) Renal denervation in human hypertension: mechanisms, current findings, and future prospects. Curr Hypertens Rep 14(3):247–253. doi:10.1007/s11906-012-0264-9

    Article  PubMed  Google Scholar 

  51. Chinushi M, Izumi D, Iijima K, Suzuki K, Furushima H, Saitoh O, Furuta Y, Aizawa Y, Iwafuchi M (2013) Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Hypertension 61(2):450–456. doi:10.1161/HYPERTENSIONAHA.111.00095

    Article  CAS  PubMed  Google Scholar 

  52. Huang B, Yu L, Scherlag BJ, Wang S, He B, Yang K, Liao K, Lu Z, He W, Zhang L, Po SS, Jiang H (2014) Left renal nerves stimulation facilitates ischemia-induced ventricular arrhythmia by increasing nerve activity of left stellate ganglion. J Cardiovasc Electrophysiol 25(11):1249–1256. doi:10.1111/jce.12498

    Article  PubMed  Google Scholar 

  53. Tsai WC, Chen PS (2014) Cross talk between renal and cardiac autonomic nerves: is this how renal denervation works? J Cardiovasc Electrophysiol. doi:10.1111/jce.12532

    PubMed  Google Scholar 

  54. Dalal D, de Jong JS, Tjong FV, Wang Y, Bruinsma N, Dekker LR, Wilde AA (2012) Mild-to-moderate kidney dysfunction and the risk of sudden cardiac death in the setting of acute myocardial infarction. Heart rhythm 9(4):540–545. doi:10.1016/j.hrthm.2011.11.014

    Article  PubMed  Google Scholar 

  55. McCloskey LW, Psaty BM, Koepsell TD, Aagaard GN (1992) Level of blood pressure and risk of myocardial infarction among treated hypertensive patients. Arch Intern Med 152(3):513–520

    Article  CAS  PubMed  Google Scholar 

  56. Huang B, Lu Z, Jiang H (2014) Does the kidney play an important role in the generation of ventricular arrhythmias and sudden cardiac death? Clin Res Cardiol. doi:10.1007/s00392-014-0768-1

    Google Scholar 

  57. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL, Investigators SH- (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401. doi:10.1056/NEJMoa1402670

    Article  CAS  PubMed  Google Scholar 

  58. Esler MD, Bohm M, Sievert H, Rump CL, Schmieder RE, Krum H, Mahfoud F, Schlaich MP (2014) Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J 35(26):1752–1759. doi:10.1093/eurheartj/ehu209

    Article  PubMed  Google Scholar 

  59. Papademetriou V, Tsioufis CP, Sinhal A, Chew DP, Meredith IT, Malaiapan Y, Worthley MI, Worthley SG (2014) Catheter-based renal denervation for resistant hypertension: 12-month results of the Enlig HTN I first-in-human study using a multielectrode ablation system. Hypertension 64(3):565–572. doi:10.1161/HYPERTENSIONAHA.114.03605

    Article  CAS  PubMed  Google Scholar 

  60. Dorr O, Liebetrau C, Mollmann H, Mahfoud F, Ewen S, Gaede L, Troidl C, Hoffmann J, Busch N, Laux G, Wiebe J, Bauer T, Hamm C, Nef H (2014) Beneficial effects of renal sympathetic denervation on cardiovascular inflammation and remodeling in essential hypertension. Clin Res Cardiol. doi:10.1007/s00392-014-0773-4

    Google Scholar 

  61. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, Esler MD, Schlaich MP (2013) Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension 61(2):457–464. doi:10.1161/HYPERTENSIONAHA.111.00194

    Article  CAS  PubMed  Google Scholar 

  62. Linz D, Mahfoud F, Schotten U, Ukena C, Hohl M, Neuberger HR, Wirth K, Bohm M (2013) Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension 61(1):225–231. doi:10.1161/HYPERTENSIONAHA.111.00182

    Article  CAS  PubMed  Google Scholar 

  63. Ukena C, Mahfoud F, Spies A, Kindermann I, Linz D, Cremers B, Laufs U, Neuberger HR, Bohm M (2013) Effects of renal sympathetic denervation on heart rate and atrioventricular conduction in patients with resistant hypertension. Int J Cardiol 167(6):2846–2851. doi:10.1016/j.ijcard.2012.07.027

    Article  PubMed  Google Scholar 

  64. Tsai WC, Chan YH, Chinda K, Lai WT, Lin SF, Chen PS (2014) Renal sympathetic denervation decreases the incidence of atrial tachycardia and improves baroreflex sensitivity in ambulatory dogs. Heart Rhythm 11:S236

    Google Scholar 

  65. Hou Y, Hu J, Po SS, Wang H, Zhang L, Zhang F, Wang K, Zhou Q (2013) Catheter-based renal sympathetic denervation significantly inhibits atrial fibrillation induced by electrical stimulation of the left stellate ganglion and rapid atrial pacing. PLoS One 8(11):e78218. doi:10.1371/journal.pone.0078218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wang Y (2014) Patients with renal artery stenosis may not be suitable for renal denervation. Clin Res Cardiol 103(7):585–586. doi:10.1007/s00392-014-0700-8

    Article  PubMed  Google Scholar 

  67. Schroeter MR, Koziolek M (2014) Early reduction of therapy-resistant hypertension in a patient after single-sided renal denervation approach. Clin Res Cardiol 103(1):79–81. doi:10.1007/s00392-013-0634-6

    Article  PubMed  Google Scholar 

  68. Armaganijan L, Staico R, Abizaid A, Moraes A, Moreira D, Amodeo C, Sousa M, Sousa JE (2013) Unilateral renal artery sympathetic denervation may reduce blood pressure in patients with resistant hypertension. J Clin Hypertens 15(8):606. doi:10.1111/jch.12121

    Article  Google Scholar 

  69. Zuern CS, Eick C, Rizas KD, Bauer S, Langer H, Gawaz M, Bauer A (2013) Impaired cardiac baroreflex sensitivity predicts response to renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 62(22):2124–2130. doi:10.1016/j.jacc.2013.07.046

    Article  PubMed  Google Scholar 

  70. Papademetriou V, Rashidi AA, Tsioufis C, Doumas M (2014) Renal nerve ablation for resistant hypertension: how did we get here, present status, and future directions. Circulation 129(13):1440–1451. doi:10.1161/CIRCULATIONAHA.113.005405

    Article  PubMed  Google Scholar 

  71. Hao Y, Lu Z (2014) Renal denervation: should we still hang in there? Int J Cardiol 176(3):1255–1256. doi:10.1016/j.ijcard.2014.07.196

    Article  PubMed  Google Scholar 

  72. Gal P, de Jong MR, Smit JJ, Adiyaman A, Staessen JA, Elvan A (2014) Blood pressure response to renal nerve stimulation in patients undergoing renal denervation: a feasibility study. J Hum Hypertens. doi:10.1038/jhh.2014.91

    PubMed  Google Scholar 

  73. Tsiachris D, Tsioufis C, Dimitriadis K, Kordalis A, Thomopoulos C, Kasiakogias A, Papalois A, Papademetriou V, Tousoulis D, Stefanadis C (2014) Electrical stimulation of the renal arterial nerves does not unmask the blindness of renal denervation procedure in swine. Int J Cardiol 176(3):1061–1063. doi:10.1016/j.ijcard.2014.07.141

    Article  PubMed  Google Scholar 

  74. Tsioufis C, Papademetriou V, Dimitriadis K, Tsiachris D, Thomopoulos C, Park E, Hata C, Papalois A, Stefanadis C (2013) Catheter-based renal sympathetic denervation exerts acute and chronic effects on renal hemodynamics in swine. Int J Cardiol 168(2):987–992. doi:10.1016/j.ijcard.2012.10.038

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China (81270339; 81300182; 81370281; 81270250; 81300181), Science and Technology Research Project of Wuhan (201306060201010271), Natural Science Foundation of Hubei Province (2013CFB302), and Fundamental Research Funds for the Central Universities (2012302020206; 2042012kf1099; 2042014kf0110).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Scherlag, B.J., Yu, L. et al. Renal sympathetic denervation for treatment of ventricular arrhythmias: a review on current experimental and clinical findings. Clin Res Cardiol 104, 535–543 (2015). https://doi.org/10.1007/s00392-015-0812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-015-0812-9

Keywords

Navigation