Skip to main content

Advertisement

Log in

Improvement of risk assessment in systemic light-chain amyloidosis using human placental growth factor

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Vascular amyloid deposition is common in light-chain amyloidosis resulting in endothelial dysfunction. Human placental growth factor (PlGF), a member of the vascular endothelial growth factor family was found to be altered in diverse pathological conditions, e.g. endothelial dysfunction. This study evaluated the clinical role of PlGF in light-chain amyloidosis.

Methods

PlGF (cobas-PlGF, Roche Diagnostics, Mannheim, Germany) was analyzed in 125 consecutive patients with AL and correlated with diverse clinical parameters including mortality.

Results

Kidney (n = 76) and heart (n = 57) were predominantly affected by amyloid deposition. Median PlGF was 26.3 (21.1–42.1) ng/L, NT-proBNP 3649 (1124–8581) pg/mL, and hs-TnT 42 (21–107) ng/L. PlGF increased with number of organs involved and with deterioration of renal function. A significant correlation of PlGF with hs-TnT (ρ = 0.306; p = 0.0007) and NT-proBNP (ρ = 0.315; p = 0.0006) was observed, but no correlation was observed with clinical, echocardiography, and electrocardiography parameters of cardiac involvement. In this cohort 1-year all-cause mortality was 19.2 %. The best cutoff discriminating survivors and non-survivors was 28.44 ng/L (sensitivity 66.7 %; specificity 78.1 %). A three-step risk model including hs-TnT and NT-proBNP revealed a better discrimination if patients at intermediary risk were additionally stratified by PlGF. Net reclassification index was 37.2 % (p = 0.002). Multivariate analysis revealed PlGF, difference of involved and uninvolved light chain, number of organs involved and risk class according to troponin T and NT-proBNP as independent predictors of mortality.

Conclusion

Plasma PlGF values in AL are invariably associated with the number of involved organs, but not with clinical, echocardiography, and electrocardiography parameters of cardiac involvement. PlGF provide useful information for risk stratification of patients at intermediary risk according to hs-TnT and NT-proBNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dubrey SW, Cha K, Skinner M, LaValley M, Falk RH (1997) Familial and primary (AL) cardiac amyloidosis: echocardiographically similar diseases with distinctly different clinical outcomes. Heart 78:74–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kristen AV, Perz JB, Schonland SO et al (2007) Rapid progression of left ventricular wall thickness predicts mortality in cardiac light-chain amyloidosis. J Heart Lung Transplant 26:1313–1319

    Article  PubMed  Google Scholar 

  3. Palladini G, Malamani G, Co F et al (2001) Holter monitoring in AL amyloidosis: prognostic implications. Pacing Clin Electrophysiol 24:1228–1233

    Article  CAS  PubMed  Google Scholar 

  4. Cueto-Garcia L, Reeder GS, Kyle RA et al (1985) Echocardiographic findings in systemic amyloidosis: spectrum of cardiac involvement and relation to survival. J Am Coll Cardiol 6:737–743

    Article  CAS  PubMed  Google Scholar 

  5. Koyama J, Ray Sequin PA, Falk RH (2002) Prognostic significance of ultrasound myocardial tissue characterization in patients with cardiac amyloidosis. Circulation 106:556–561

    Article  PubMed  Google Scholar 

  6. Kristen AV, Perz J, Schonland S et al (2007) Non-invasive Predictors of Survival in Cardiac Amyloidosis. Eur J Heart Fail 9:617–624

    Article  CAS  PubMed  Google Scholar 

  7. Buss SJ, Mereles D, Emami M et al (2012) Rapid assessment of longitudinal systolic left ventricular function using speckle tracking of the mitral annulus. Clin Res Cardiol 101:273–280

    Article  PubMed  Google Scholar 

  8. Dispenzieri A, Kyle RA, Gertz MA et al (2003) Survival in patients with primary systemic amyloidosis and raised serum cardiac troponins. Lancet 361:1787–1789

    Article  CAS  PubMed  Google Scholar 

  9. Palladini G, Campana C, Klersy C et al (2003) Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation 107:2440–2445

    Article  CAS  PubMed  Google Scholar 

  10. Dispenzieri A, Gertz MA, Kyle RA et al (2004) Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol 22:3751–3757

    Article  CAS  PubMed  Google Scholar 

  11. Brunner H, Cockcroft JR, Deanfield J et al (2005) Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 23:233–246

    Article  CAS  PubMed  Google Scholar 

  12. Crotty TB, Chin-Yang L, Edwards WD, Suman VJ (1995) Amyloidosis and endomyocardial biopsy: correlation of extent and pattern of deposition with amyloid immunophenotype in 100 cases. Cardiovasc Pathol 4:39–42

    Article  Google Scholar 

  13. Modesto KM, Dispenzieri A, Gertz M et al (2007) Vascular abnormalities in primary amyloidosis. Eur Heart J 28:1019–1024

    Article  PubMed  Google Scholar 

  14. Al Suwaidi J, Velianou JL, Gertz MA et al (1999) Systemic amyloidosis presenting with angina pectoris. Ann Intern Med 131:838–841

    Article  CAS  PubMed  Google Scholar 

  15. Berghoff M, Kathpal M, Khan F et al (2003) Endothelial dysfunction precedes C-fiber abnormalities in primary (AL) amyloidosis. Ann Neurol 53:725–730

    Article  PubMed  Google Scholar 

  16. Noori M, Donald AE, Angelakopoulou A, Hingorani AD, Williams DJ (2010) Prospective study of placental angiogenic factors and maternal vascular function before and after preeclampsia and gestational hypertension. Circulation 122:478–487

    Article  CAS  PubMed  Google Scholar 

  17. Persico MG, Vincenti V, DiPalma T (1999) Structure, expression and receptor-binding properties of placenta growth factor (PlGF). Curr Top Microbiol Immunol 237:31–40

    CAS  PubMed  Google Scholar 

  18. Roskoski R Jr (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62:179–213

    Article  PubMed  Google Scholar 

  19. Tarnow L, Astrup AS, Parving HH (2005) Elevated placental growth factor (PlGF) predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Scand J Clin Lab Invest Suppl 240:73–79

    Article  PubMed  Google Scholar 

  20. Cianfarani F, Zambruno G, Brogelli L et al (2006) Placenta growth factor in diabetic wound healing: altered expression and therapeutic potential. Am J Pathol 169:1167–1182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Heeschen C, Dimmeler S, Fichtlscherer S et al (2004) Prognostic value of placental growth factor in patients with acute chest pain. JAMA 291:435–441

    Article  CAS  PubMed  Google Scholar 

  22. Lenderink T, Heeschen C, Fichtlscherer S et al (2006) Elevated placental growth factor levels are associated with adverse outcomes at four-year follow-up in patients with acute coronary syndromes. J Am Coll Cardiol 47:307–311

    Article  CAS  PubMed  Google Scholar 

  23. Luttun A, Tjwa M, Moons L et al (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8:831–840

    CAS  PubMed  Google Scholar 

  24. Iyer S, Acharya KR (2002) Role of placenta growth factor in cardiovascular health. Trends Cardiovasc Med 12:128–134

    Article  CAS  PubMed  Google Scholar 

  25. Beck H, Acker T, Puschel AW et al (2002) Cell type-specific expression of neuropilins in an MCA-occlusion model in mice suggests a potential role in post-ischemic brain remodeling. J Neuropathol Exp Neurol 61:339–350

    CAS  PubMed  Google Scholar 

  26. Schonland SO, Hegenbart U, Bochtler T et al (2012) Immunohistochemistry in the classification of systemic forms of amyloidosis: a systematic investigation of 117 patients. Blood 119:488–493

    Article  PubMed  Google Scholar 

  27. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  28. Gertz MA, Comenzo R, Falk RH et al (2005) Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10(th) International Symposium on Amyloid and Amyloidosis. Am J Hematol 79:319–328

    Article  PubMed  Google Scholar 

  29. Gertz MA, Comenzo R, Falk RH et al (2005) Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am J Hematol 79:319–328

    Article  PubMed  Google Scholar 

  30. Rahman JE, Helou EF, Gelzer Bell R et al (2004) Noninvasive diagnosis of biopsy-proven cardiac amyloidosis. J Am Coll Cardiol 43:410–415

    Article  PubMed  Google Scholar 

  31. Devereux RB, Alonso DR, Lutas EM et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  PubMed  Google Scholar 

  32. Giannitsis E, Kurz K, Hallermayer K et al (2010) Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem 56:254–261

    Article  CAS  PubMed  Google Scholar 

  33. Kurz K, Giannitsis E, Zehelein J, Katus HA (2008) Highly sensitive cardiac troponin T values remain constant after brief exercise- or pharmacologic-induced reversible myocardial ischemia. Clin Chem 54:1234–1238

    Article  CAS  PubMed  Google Scholar 

  34. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172

    Article  PubMed  Google Scholar 

  35. Ukena C, Kindermann M, Mahfoud F et al (2014) Diagnostic and prognostic validity of different biomarkers inpatients with suspected myocarditis. Clin Res Cardiol 103(9):743–751

    Article  CAS  PubMed  Google Scholar 

  36. Leistner DM, Klotsche J, Pieper L et al (2013) Prognostic value of NT-pro-BNP and hs-CRP for risk stratification in primary care: results from the population-based DETECT study. Clin Res Cardiol 102(4):259–268

    Article  PubMed  Google Scholar 

  37. Behnes M, Brueckmann M, Lang S et al (2014) Connective tissue growth factor (CTGF/CCN2): diagnostic and prognostic value in acute heart failure. Clin Res Cardiol 103(2):107–116

    Article  CAS  PubMed  Google Scholar 

  38. Mattei MG, Borg JP, Rosnet O, Marme D, Birnbaum D (1996) Assignment of vascular endothelial growth factor (VEGF) and placenta growth factor (PLGF) genes to human chromosome 6p12–p21 and 14q24–q31 regions, respectively. Genomics 32:168–169

    Article  CAS  PubMed  Google Scholar 

  39. Autiero M, Luttun A, Tjwa M, Carmeliet P (2003) Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1:1356–1370

    Article  CAS  PubMed  Google Scholar 

  40. Nakamura T, Funayama H, Kubo N et al (2009) Elevation of plasma placental growth factor in the patients with ischemic cardiomyopathy. Int J Cardiol 131:186–191

    Article  PubMed  Google Scholar 

  41. Lenderink T, Heeschen C, Fichtlscherer S et al (2006) Elevated placental growth factor levels are associated with adverse outcomes at 4-year follow-up in patients with acute coronary syndromes. J Am Coll Cardiol 47:307–311

    Article  CAS  PubMed  Google Scholar 

  42. Iwama H, Uemura S, Naya N et al (2006) Cardiac expression of placental growth factor predicts the improvement of chronic phase left ventricular function in patients with acute myocardial infarction. J Am Coll Cardiol 47:1559–1567

    Article  CAS  PubMed  Google Scholar 

  43. Brenner DA, Jain M, Pimentel DR et al (2004) Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res 94:1008–1010

    Article  CAS  PubMed  Google Scholar 

  44. Liao R, Jain M, Teller P et al (2001) Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts. Circulation 104:1594–1597

    CAS  PubMed  Google Scholar 

  45. Dispenzieri A, Gertz MA, Kyle RA et al (2004) Prognostication of survival using cardiac troponins and N-terminal pro-brain natriuretic peptide in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood 104:1881–1887

    Article  CAS  PubMed  Google Scholar 

  46. Kristen AV, Lehrke S, Buss S et al (2012) Green tea halts progression of cardiac transthyretin amyloidosis: an observational report. Clin Res Cardiol 101:805–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The brilliant technical assistance of Heidi Deigentasch, Melanie Magin, and Christa Dewald is gratefully acknowledged. Many thanks are to Winfried Koch for his excellent statistical support.

Conflict of interest

EG has received financial support for clinical trials from Roche Diagnostics, Germany. He is consultant to Roche Diagnostics and receives honoraria for lectures from Roche Diagnostics. HAK has developed the cTnT assay and holds a patent jointly with Roche Diagnostics. He has received grants and research support from several companies, and has received honoraria for lectures from Roche Diagnostics. The remaining authors do not have any disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnt V. Kristen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristen, A.V., Rinn, J., Hegenbart, U. et al. Improvement of risk assessment in systemic light-chain amyloidosis using human placental growth factor. Clin Res Cardiol 104, 250–257 (2015). https://doi.org/10.1007/s00392-014-0779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-014-0779-y

Keywords

Navigation