Skip to main content
Log in

Complement anaphylatoxin C3a as a novel independent prognostic marker in heart failure

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study was to evaluate complement activation in a heart failure cohort. Based on their powerful biological activity, we hypothesized that the levels of anaphylatoxin C3a are related to pathological signs and outcomes in heart failure.

Design, setting and patients

Complement activation products C3a and SC5b9 were determined in 182 consecutive CHF patients (single centre, prospective cohort study), with a left ventricular ejection fraction <45%. Mortality and re-hospitalisation due to the progression of CHF were assessed after a median follow-up of 14 months.

Interventions

None.

Results

In the univariate analysis, high level of anaphylatoxin C3a was significantly associated with clinical events (p < 0.0001), whereas SC5b9 showed a tendency of association (p = 0.094). In multivariable Cox analysis, adjusted for age, NT-proBNP, diastolic blood pressure, body mass index (BMI), haemoglobin and creatinine levels, C3a was a significant predictor of HF-related re-hospitalization or death (HR 1.189 per 1-SD increase, 95% CI 1.023–1.383), and of cardiovascular events or death (HR 1.302, CI 1.083–1.566). C3a was strongly associated with the presence of peripheral oedema, inflammatory markers (CRP, prealbumin, IL-6, sTNFRI, sTNFRII), heat-shock protein 70 levels and endothelial activation markers (von-Willebrand factor and endothelin-1).

Conclusions

Results of the present study showed that complement activation is strongly linked to unfavourable outcomes in heart failure. High levels of anaphylatoxin C3a predicted re-hospitalization, cardiovascular events and mortality in adjusted survival model. Increased C3a levels were associated with biomarkers of acute-phase reaction, inflammation, cellular stress response, endothelial-cell activation and oedematous complications independently from disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Celis R, Torre-Martinez G, Torre-Amione G (2008) Evidence for activation of immune system in heart failure: is there a role for anti-inflammatory therapy? Curr Opin Cardiol 23:254–260

    Article  PubMed  Google Scholar 

  2. Anker SD, Egerer KR, Volk HD, Kox WJ, Poole-Wilson PA, Coats AJ (1997) Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 79:1426–1430

    Article  PubMed  CAS  Google Scholar 

  3. Rauchhaus M, Coats AJ, Anker SD (2000) The endotoxin-lipoprotein hypothesis. Lancet 356:930–933

    Article  PubMed  CAS  Google Scholar 

  4. Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, Poole-Wilson PA, Coats AJ, Anker SD (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1842

    Article  PubMed  CAS  Google Scholar 

  5. Markiewski MM, Lambris JD (2007) The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 171:715–727

    Article  PubMed  CAS  Google Scholar 

  6. Harboe M, Mollnes TE (2008) The alternative complement pathway revisited. J Cell Mol Med 12:1074–1084

    Article  PubMed  CAS  Google Scholar 

  7. Muller-Eberhard HJ (1988) Molecular organization and function of the complement system. Annu Rev Biochem 57:321–347

    Article  PubMed  CAS  Google Scholar 

  8. Matsushita M (1996) The lectin pathway of the complement system. Microbiol Immunol 40:887–893

    PubMed  CAS  Google Scholar 

  9. Guo RF, Ward PA (2006) C5a, a therapeutic target in sepsis. Recent Pat Antiinfect Drug Discov 1:57–65

    Article  PubMed  CAS  Google Scholar 

  10. Torre-Amione G (2005) Immune activation in chronic heart failure. Am J Cardiol 95:3C–8C discussion 38C–40C

    Article  PubMed  CAS  Google Scholar 

  11. Aukrust P, Gullestad L, Lappegård KT, Ueland T, Aass H, Wikeby L, Simonsen S, Frøland SS, Mollnes TE (2001) Complement activation in patients with congestive heart failure: effect of high-dose intravenous immunoglobulin treatment. Circulation 104:1494–1500

    Article  PubMed  CAS  Google Scholar 

  12. Clark DJ, Cleman MW, Pfau SE, Rollins SA, Ramahi TM, Mayer C, Caulin-Glaser T, Daher E, Kosiborod M, Bell L, Setaro JF (2001) Serum complement activation in congestive heart failure. Am Heart J 141:684–690

    Article  PubMed  CAS  Google Scholar 

  13. Zwaka TP, Manolov D, Ozdemir C, Marx N, Kaya Z, Kochs M, Höher M, Hombach V, Torzewski J (2002) Complement and dilated cardiomyopathy: a role of sublytic terminal complement complex-induced tumor necrosis factor-alpha synthesis in cardiac myocytes. Am J Pathol 161:449–457

    Article  PubMed  CAS  Google Scholar 

  14. Zimmermann O, Kochs M, Zwaka TP, Bienek-Ziolkowski M, Höher M, Hombach V, Torzewski J (2007) Prognostic role of myocardial tumor necrosis factor-alpha and terminal complement complex expression in patients with dilated cardiomyopathy. Eur J Heart Fail 9:51–54

    Article  PubMed  CAS  Google Scholar 

  15. Czúcz J, Cervenak L, Förhécz Z, Gombos T, Pozsonyi Z, Kunde J, Karádi I, Jánoskuti L, Prohászka Z (2011) Serum soluble E-selectin and NT-proBNP levels additively predict mortality in diabetic patients with chronic heart failure. Clin Res Cardiol 100(7):587–594

    Article  PubMed  Google Scholar 

  16. Papassotiriou J, Morgenthaler NG, Struck J, Alonso C, Bergmann A (2006) Immunoluminometric assay for measurement of the C-terminal endothelin-1 precursor fragment in human plasma. Clin Chem 52:1144–1151

    Article  PubMed  CAS  Google Scholar 

  17. Cejka J (1984) Performance characteristics of a commercial kit for assay of factor viii-related antigen. Clin Chem 30:814–815

    PubMed  CAS  Google Scholar 

  18. Gombos T, Forhecz Z, Pozsonyi Z, Janoskuti L, Prohaszka Z (2008) Interaction of serum 70-kDa heat shock protein levels and HspA1B (+1267) gene polymorphism with disease severity in patients with chronic heart failure. Cell Stress Chaperones 13:199–206

    Article  PubMed  CAS  Google Scholar 

  19. Franke J, Zugck C, Wolter JS, Frankenstein L, Hochadel M, Ehlermann P, Winkler R, Nelles M, Zahn R, Katus HA, Senges J (2012) A decade of developments in chronic heart failure treatment: a comparison of therapy and outcome in a secondary and tertiary hospital setting. Clin Res Cardiol 101(1):1–10

    Article  PubMed  Google Scholar 

  20. Tanner H, Mohacsi P, Fuller-Bicer GA, Rieben R, Meier B, Hess O, Hullin R (2007) Cytokine activation and disease progression in patients with stable moderate chronic heart failure. J Heart Lung Transpl 26:622–629

    Article  CAS  Google Scholar 

  21. Clark AL, Loebe M, Potapov EV, Egerer K, Knosalla C, Hetzer R, Anker SD (2001) Ventricular assist device in severe heart failure: effects on cytokines, complement and body weight. Eur Heart J 22:2275–2283

    Article  PubMed  CAS  Google Scholar 

  22. Loebe M, Gorman K, Burger R, Gage JE, Harke C, Hetzer R (1998) Complement activation in patients undergoing mechanical circulatory support. ASAIO J 44:M340–M346

    Article  PubMed  CAS  Google Scholar 

  23. Loebe M, Koster A, Sänger S, Potapov EV, Kuppe H, Noon GP, Hetzer R (2001) Inflammatory response after implantation of a left ventricular assist device: comparison between the axial flow MicroMed DeBakey VAD and the pulsatile Novacor device. ASAIO J 47:272–274

    Article  PubMed  CAS  Google Scholar 

  24. Jahns R, Boivin V, Siegmund C, Inselmann G, Lohse MJ, Boege F (1999) Autoantibodies activating human beta1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 99:649–654

    Article  PubMed  CAS  Google Scholar 

  25. Pye M, Rae AP, Cobbe SM (1990) Study of serum C-reactive protein concentration in cardiac failure. Br Heart J 63:228–230

    Article  PubMed  CAS  Google Scholar 

  26. Beranek JT (1997) C-reactive protein and complement in myocardial infarction and postinfarction heart failure. Eur Heart J 18:1834–1836

    Article  PubMed  CAS  Google Scholar 

  27. Collard CD, Väkevä A, Morrissey MA, Agah A, Rollins SA, Reenstra WR, Buras JA, Meri S, Stahl GL (2000) Complement activation after oxidative stress: role of the lectin complement pathway. Am J Pathol 156:1549–1556

    Article  PubMed  CAS  Google Scholar 

  28. Knowlton AA, Eberli FR, Brecher P, Romo GM, Owen A, Apstein CS (1991) A single myocardial stretch or decreased systolic fiber shortening stimulates the expression of heat shock protein 70 in the isolated, erythrocyte-perfused rabbit heart. J Clin Invest 88:2018–2025

    Article  PubMed  CAS  Google Scholar 

  29. Tanonaka K, Yoshida H, Toga W, Furuhama K, Takeo S (2001) Myocardial heat shock proteins during the development of heart failure. Biochem Biophys Res Commun 283:520–525

    Article  PubMed  CAS  Google Scholar 

  30. Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N, Sellevold OF, Espevik T, Sundan A (2002) Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 105:685–690

    Article  PubMed  CAS  Google Scholar 

  31. Genth-Zotz S, Bolger AP, Kalra PR, von Haehling S, Doehner W, Coats AJ, Volk HD, Anker SD (2004) Heat shock protein 70 in patients with chronic heart failure: relation to disease severity and survival. Int J Cardiol 96:397–401

    Article  PubMed  Google Scholar 

  32. Prohászka Z, Singh M, Nagy K, Kiss E, Lakos G, Duba J, Füst G (2002) Heat shock protein 70 is a potent activator of the human complement system. Cell Stress Chaperones 7:17–22

    Article  PubMed  Google Scholar 

  33. Bauersachs J, Widder JD (2008) Endothelial dysfunction in heart failure. Pharmacol Rep 60:119–126

    PubMed  CAS  Google Scholar 

  34. Hindmarsh EJ, Marks RM (1998) Complement activation occurs on subendothelial extracellular matrix in vitro and is initiated by retraction or removal of overlying endothelial cells. J Immunol 160:6128–6136

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to our patients who agreed to participate in this study. The skilful technical assistance of Holeczky Rudolfné, Szigeti Antalné, Korponai Gézáné, Piroska Sturmann and Márta Kókai is acknowledged with many thanks. This work was supported by the following grants: Hungarian Scientific Research Fund (OTKA T046837, NF72689), National Development Agency TÁMOP 4.2.2-08/01/KMR-2008-0004 and Ministry of Health (ETT 229/2006).

Conflict of interest

Dr Kunde is employee of BRAHMS GmbH (now Thermofisher), Hennigsdorf, Germany that commercializes immunoassays and has developed the CT-proET-1 assay, for which it owns patent rights. The present study was not financed by BRAHMS AG. The remaining authors report no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Prohászka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gombos, T., Förhécz, Z., Pozsonyi, Z. et al. Complement anaphylatoxin C3a as a novel independent prognostic marker in heart failure. Clin Res Cardiol 101, 607–615 (2012). https://doi.org/10.1007/s00392-012-0432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-012-0432-6

Keywords

Navigation