Skip to main content
Log in

Technology-based measurements for screening, monitoring and preventing frailty

Screening, Monitoring und Prävention von (Pre-)Frailty mit technologiebasierten Assessments

  • Beiträge zum Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

Background and objective

Sensor technology, in particular wearable inertial sensors, has the potential to help researchers objectively assess the functionality of older adults. The following review provides an overview about the possible use of sensor technology to detect and prevent pre-frailty and frailty.

Method

A systematic literature search in PubMed and the Cochrane Library was conducted. Articles were selected according to the following criteria: frail and/or pre-frail population, use of wearable and non-wearable sensor technology to measure or enhance human movements or activities of daily living and a focus on frailty assessment.

Results

A total of 28 publications were found. Sensor-derived parameters obtained during assessment of gait, functional performances and physical activity were reported to be relevant for screening and monitoring pre-frailty and frailty; however, current findings are limited to cross-sectional studies, which do not allow establishment of a causal relationship between motor performance, physical activity and specific frailty states. No study monitored specific activities of daily living.

Discussion

Outcome variables from technology-based assessment seem to provide valuable information for frailty assessment. Strenuous testing conditions as well as increased variability in gait, functional performance and physical activity may be useful in identifying frailty. Outcome variables derived from gait, motor assessment and physical activity must still be validated in large cohorts and under daily living conditions in order to develop robust screening tools for pre-frailty and frailty. Further research should focus on specific activities of daily living in pre-frail or frail older adults and technology-based approaches for intervention and prevention.

Zusammenfassung

Hintergrund und Zielsetzung

Sensortechnologie und speziell tragbare Inertialsensorik kann die Funktionalität älterer Menschen messen und bewerten. Im folgenden Review wird ein Überblick gegeben, inwieweit Sensortechnologie (Pre-)Frailty erkennen und der Prävention dienen kann.

Methoden

Eine systematische Literaturrecherche in PubMed und Cochrane Library wurde mit folgenden Einschlusskriterien durchgeführt: (pre-)fraile Studienpopulation, Einsatz tragbarer und/oder nicht tragbarer Sensortechnologie zum Messen oder Fördern von Bewegung und Aktivitäten des täglichen Lebens und Fokus auf Frailty-Assessment.

Ergebnisse

Insgesamt 28 Artikel wurden identifiziert. Sensorparameter für den Gang, das motorische Assessment und die körperliche Aktivität eignen sich zum Screening und Monitoring von (Pre-)Frailty. Kausalbeziehungen zwischen Sensorparametern und Frailty-Status können aufgrund mangelnder Längsschnittstudien jedoch bislang nicht abgeleitet werden. Ein sensorbasiertes Monitoring spezieller Aktivitäten des täglichen Lebens erfolgte nicht.

Diskussion

Technologiegestützte Assessmentparameter können wertvolle Informationen zum Frailty-Assessment beitragen. Sensorparameter von Gang, motorischem Assessment und körperlicher Aktivität sollten in großen Stichproben und unter Alltagsbedingungen validiert werden, um robuste Screening-Instrumente für (Pre-)Frailty zu entwickeln. Zukünftige Projekte sollten sich darüber hinaus auf spezifische sensorbasiert gemessene Aktivitäten des alltäglichen Lebens und technologie-gestützte Ansätze zur Prävention und Intervention bei (Pre-)Frailty fokussieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC (2012) Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc 60:1487–1492. doi:10.1111/j.1532-5415.2012.04054.x

    Article  PubMed  Google Scholar 

  2. Dapp U, Minder CE, Anders J, Golgert S, von Renteln-Kruse W (2014) Long-term prediction of changes in health status, frailty, nursing care and mortality in community-dwelling senior citizens-results from the Longitudinal Urban Cohort Ageing Study (LUCAS). BMC Geriatr 14:141. doi:10.1186/1471-2318-14-141

    Article  PubMed  PubMed Central  Google Scholar 

  3. Daintith J (2009) A dictionary of physics, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  4. Morgenstern U, Kraft M (eds) (2014) Biomedizinische Technik – Faszination, Einführung, Überblick. De Gruyter, Berlin

    Google Scholar 

  5. Greene BR, Doheny EP, O’Halloran A, Anne Kenny R (2014) Frailty status can be accurately assessed using inertial sensors and the TUG test. Age Ageing 43:406–411. doi:10.1093/ageing/aft176

    Article  PubMed  Google Scholar 

  6. Schwenk M, Mohler J, Wendel C, D’Huyvetter K, Fain M, Taylor-Piliae R, Najafi B (2015) Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: baseline results of the Arizona frailty cohort study. Gerontology 61:258–267. doi:10.1159/000369095

    Article  PubMed  Google Scholar 

  7. Theou O, Jakobi JM, Vandervoort AA, Jones GR (2012) A comparison of physical activity (PA) assessment tools across levels of frailty. Arch Gerontol Geriatr 54:e307–e314. doi:10.1016/j.archger.2011.12.005

    Article  PubMed  Google Scholar 

  8. Thiede R, Toosizadeh N, Mills JL, Zaky M, Mohler J, Najafi B (2016) Gait and balance assessments as early indicators of frailty in patients with known peripheral artery disease. Clin Biomech (Bristol, Avon) 32:1–7. doi:10.1016/j.clinbiomech.2015.12.002

    Article  Google Scholar 

  9. Regterschot GRH, Zhang W, Baldus H, Stevens M, Zijlstra W (2016) Accuracy and concurrent validity of a sensor-based analysis of sit-to-stand movements in older adults. Gait Posture 45:198–203. doi:10.1016/j.gaitpost.2016.02.004

    Article  PubMed  Google Scholar 

  10. Alexander GL, Rantz M, Skubic M, Koopman RJ, Phillips LJ, Guevara RD, Miller SJ (2011) Evolution of an early illness warning system to monitor frail elders in independent living. J Healthc Eng 2:337–363

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ranasinghe DC, Shinmoto Torres RL, Hill K, Visvanathan R (2014) Low cost and batteryless sensor-enabled radio frequency identification tag based approaches to identify patient bed entry and exit posture transitions. Gait Posture 39:118–123. doi:10.1016/j.gaitpost.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  12. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med 6:e1000097. doi:10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  13. Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R et al (2013) Frailty consensus: a call to action. J Am Med Dir Assoc 14:392–397. doi:10.1016/j.jamda.2013.03.022

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cesari M, Prince M, Thiyagarajan JA, de Carvalho IA, Bernabei R, Chan P et al (2016) Frailty: an emerging public health priority. J Am Med Dir Assoc 17:188–192. doi:10.1016/j.jamda.2015.12.016

    Article  PubMed  Google Scholar 

  15. Morley JE (2014) Frailty screening comes of age. J Nutr Health Aging 18:453–454. doi:10.1007/s12603-014-0457-9

    Article  CAS  PubMed  Google Scholar 

  16. Rockwood K, Theou O, Walston J (2015) Operationalizing frailty using the frailty phenotype and deficit accumulation approaches. Interdiscip Top Gerontol Geriatr 41:66–73. doi:10.1159/000381164

    PubMed  Google Scholar 

  17. Bandeen-Roche K, Seplaki CL, Huang J, Buta B, Kalyani RR, Varadhan R et al (2015) Frailty in older adults: a nationally representative profile in the united states. J Gerontol A Biol Sci Med Sci 70:1427–1434. doi:10.1093/gerona/glv133

    Article  PubMed  Google Scholar 

  18. Fabbri E, Zoli M, Gonzalez-Freire M, Salive ME, Studenski SA, Ferrucci Aging Multimorbidity L (2015) New tasks, priorities, and frontiers for integrated gerontological and clinical research. J Am Med Dir Assoc 16:640–647. doi:10.1016/j.jamda.2015.03.013

    Article  PubMed  Google Scholar 

  19. Buta BJ, Walston JD, Godino JG, Park M, Kalyani RR, Xue Q‑L et al (2016) Frailty assessment instruments: systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res Rev 26:53–61. doi:10.1016/j.arr.2015.12.003

    Article  PubMed  Google Scholar 

  20. Drey M, Pfeifer K, Sieber CC, Bauer JM (2011) The Fried frailty criteria as inclusion criteria for a randomized controlled trial: personal experience and literature review. Gerontology 57:11–18. doi:10.1159/000313433

    Article  CAS  PubMed  Google Scholar 

  21. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156

    Article  CAS  PubMed  Google Scholar 

  22. Kim M‑J, Yabushita N, Kim M‑K, Nemoto M, Seino S, Tanaka K (2010) Mobility performance tests for discriminating high risk of frailty in community-dwelling older women. Arch Gerontol Geriatr 51:192–198. doi:10.1016/j.archger.2009.10.007

    Article  PubMed  Google Scholar 

  23. Schwenk M, Howe C, Saleh A, Mohler J, Grewal G, Armstrong D, Najafi B (2014) Frailty and technology: a systematic review of gait analysis in those with frailty. Gerontology 60:79–89. doi:10.1159/000354211

    Article  PubMed  Google Scholar 

  24. Najafi B, Helbostad JL, Moe-Nilssen R, Zijlstra W, Aminian K (2009) Does walking strategy in older people change as a function of walking distance? Gait Posture 29:261–266. doi:10.1016/j.gaitpost.2008.09.002

    Article  PubMed  Google Scholar 

  25. Mohler MJ, Fain MJ, Wertheimer AM, Najafi B, Nikolich-Zugich J (2014) The Frailty syndrome: clinical measurements and basic underpinnings in humans and animals. Exp Gerontol 54:6–13. doi:10.1016/j.exger.2014.01.024

    Article  PubMed  Google Scholar 

  26. Martinez-Ramirez A, Martinikorena I, Gomez M, Lecumberri P, Millor N, Rodriguez-Manas L et al (2015) Frailty assessment based on trunk kinematic parameters during walking. J Neuroeng Rehabil 12:48. doi:10.1186/s12984-015-0040-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mohler MJ, Wendel CS, Taylor-Piliae RE, Toosizadeh N, Najafi B (2016) Motor performance and physical activity as predictors of prospective falls in community-dwelling older adults by frailty level: application of wearable technology. Gerontology. doi:10.1159/000445889

    Google Scholar 

  28. Moe-Nilssen R, Helbostad JL (2005) Interstride trunk acceleration variability but not step width variability can differentiate between fit and frail older adults. Gait Posture 21:164–170. doi:10.1016/j.gaitpost.2004.01.013

    Article  PubMed  Google Scholar 

  29. Gillain S, Petermans J (2013) Contribution of new techniques to study the gait in old populations. Ann Phys Rehabil Med 56:384–395. doi:10.1016/j.rehab.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  30. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K (2013) Frailty in elderly people. Lancet 381:752–762. doi:10.1016/S0140-6736(12)62167-9

    Article  PubMed  Google Scholar 

  31. Galan-Mercant A, Cuesta-Vargas AI (2014) Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. BMC Res Notes 7:100. doi:10.1186/1756-0500-7-100

    Article  PubMed  PubMed Central  Google Scholar 

  32. Millor N, Lecumberri P, Gomez M, Martinez-Ramirez A, Izquierdo M (2014) Kinematic parameters to evaluate functional performance of sit-to-stand and stand-to-sit transitions using motion sensor devices: a systematic review. IEEE Trans Neural Syst Rehabil Eng 22:926–936. doi:10.1109/TNSRE.2014.2331895

    Article  PubMed  Google Scholar 

  33. Ganea R, Paraschiv-Ionescu A, Bula C, Rochat S, Aminian K (2011) Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Med Eng Phys 33:1086–1093. doi:10.1016/j.medengphy.2011.04.015

    Article  CAS  PubMed  Google Scholar 

  34. Galan-Mercant A, Cuesta-Vargas AI (2013) Differences in trunk accelerometry between frail and nonfrail elderly persons in sit-to-stand and stand-to-sit transitions based on a mobile inertial sensor. JMIR Mhealth Uhealth 1:e21. doi:10.2196/mhealth.2710

    Article  PubMed  PubMed Central  Google Scholar 

  35. Millor N, Lecumberri P, Gomez M, Martinez-Ramirez A, Izquierdo M (2013) An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit. J Neuroeng Rehabil 10:86. doi:10.1186/1743-0003-10-86

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ganea R, Paraschiv-lonescu A, Aminian K (2012) Detection and classification of postural transitions in real-world conditions. IEEE Trans Neural Syst Rehabil Eng 20:688–696. doi:10.1109/TNSRE.2012.2202691

    Article  PubMed  Google Scholar 

  37. Greene BR, Doheny EP, Kenny RA, Caulfield B (2014) Classification of frailty and falls history using a combination of sensor-based mobility assessments. Physiol Meas 35:2053–2066. doi:10.1088/0967-3334/35/10/2053

    Article  PubMed  Google Scholar 

  38. Martinez-Ramirez A, Lecumberri P, Gomez M, Rodriguez-Manas L, Garcia FJ, Izquierdo M (2011) Frailty assessment based on wavelet analysis during quiet standing balance test. J Biomech 44:2213–2220. doi:10.1016/j.jbiomech.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  39. Galan-Mercant A, Cuesta-Vargas AI (2014) Mobile Romberg test assessment (mRomberg). BMC Res Notes 7:640. doi:10.1186/1756-0500-7-640

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen S, Honda T, Chen T, Narazaki K, Haeuchi Y, Supartini A, Kumagai S (2015) Screening for frailty phenotype with objectively-measured physical activity in a west Japanese suburban community: evidence from the Sasaguri Genkimon Study. BMC Geriatr 15:36. doi:10.1186/s12877-015-0037-9

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peters LL, Boter H, Buskens E, Slaets JPJ (2012) Measurement properties of the Groningen Frailty Indicator in home-dwelling and institutionalized elderly people. J Am Med Dir Assoc 13:546–551. doi:10.1016/j.jamda.2012.04.007

    Article  PubMed  Google Scholar 

  42. Song J, Lindquist LA, Chang RW, Semanik PA, Ehrlich-Jones LS, Lee J et al (2015) Sedentary behavior as a risk factor for physical frailty independent of moderate activity: results from the osteoarthritis initiative. Am J Public Health 105:1439–1445. doi:10.2105/AJPH.2014.302540

    Article  PubMed  PubMed Central  Google Scholar 

  43. Soaz C, Diepold K (2015) Step detection and parameterization for diagnosis and monitoring of functional decline using a single waist-worn accelerometer. IEEE Trans Biomed Eng. doi:10.1109/TBME.2015.2480296

    PubMed  Google Scholar 

  44. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M (2008) Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 40:181–188. doi:10.1249/mss.0b013e31815a51b3

    Article  PubMed  Google Scholar 

  45. McCullagh R, Brady NM, Dillon C, Horgan NF, Timmons S (2015) A review of the accuracy and utility of motion sensors to measure physical activity of frail older hospitalised patients. J Aging Phys Act. doi:10.1123/japa.2014-0190

    PubMed  Google Scholar 

  46. Hollewand AM, Spijkerman AG, Bilo HJ, Kleefstra N, Kamsma Y, van Hateren KJ (2016) Validity of an accelerometer-based activity monitor system for measuring physical activity in frail elderly. J Aging Phys Act. doi:10.1123/japa.2014-0290

    PubMed  Google Scholar 

  47. Chang Y‑C, Lin C‑C, Lin P‑H, Chen C‑C, Lee R‑G, Huang J‑S, Tsai T‑H (2013) eFurniture for home-based frailty detection using artificial neural networks and wireless sensors. Med Eng Phys 35:263–268. doi:10.1016/j.medengphy.2011.09.010

    Article  PubMed  Google Scholar 

  48. Fontecha J, Hervas R, Bravo J, Navarro FJ (2013) A mobile and ubiquitous approach for supporting frailty assessment in elderly people. J Med Internet Res 15:e197. doi:10.2196/jmir.2529

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hewson DJ, Jaber R, Chkeir A, Hammoud A, Gupta D, Bassement J et al (2013) Development of a monitoring system for physical frailty in independent elderly. Conf Proc IEEE Eng Med Biol Soc 2013:6215–6218. doi:10.1109/EMBC.2013.6610973

    PubMed  Google Scholar 

  50. de Folter J, Gokalp H, Fursse J, Sharma U, Clarke M (2014) Designing effective visualizations of habits data to aid clinical decision making. BMC Med Inform Decis Mak 14:102. doi:10.1186/s12911-014-0102-x

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rockwood K, Andrew M, Mitnitski A (2007) A comparison of two approaches to measuring frailty in elderly people. J Gerontol Ser A Biol Sci Med Sci 62(7):738–743

  52. Mitnitski AB, Mogilner AJ, Rockwood K (2001) Accumulation of deficits as a proxy measure of aging. The Sci World J 1:323–336. doi:10.1100/tsw.2001.58

  53. Espinoza S, Fried L (2007) Risk factors for frailty in the older adult. Clin Geriatr 15(6):37–44

  54. Rolfson DB, Majumdar SR, Tsuyuki RT, Tahir A, Rockwood K (2006) Validity and reliability of the Edmonton Frail Scale. Age Ageing 35(5):526–529. doi:10.1093/ageing/afl041

  55. Weiss A, Herman T, Plotnik M, Brozgol M, Giladi N, Hausdorff JM (2011) An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiol Meas 32:2003–2018. doi:10.1088/0967-3334/32/12/009

    Article  CAS  PubMed  Google Scholar 

  56. Regterschot GRH, Zhang W, Baldus H, Stevens M, Zijlstra W (2015) Sensor-based monitoring of sit-to-stand performance is indicative of objective and self-reported aspects of functional status in older adults. Gait Posture 41:935–940. doi:10.1016/j.gaitpost.2015.03.350

    Article  PubMed  Google Scholar 

  57. Marschollek M, Goevercin M, Wolf KH, Song B, Gietzelt M, Haux R, Steinhagen-Thiessen E (2008) A performance comparison of accelerometry-based step detection algorithms on a large, non-laboratory sample of healthy and mobility-impaired persons. Conf Proc IEEE Eng Med Biol Soc 2008:1319–1322. doi:10.1109/IEMBS.2008.4649407

    PubMed  Google Scholar 

  58. Lindemann U, Zijlstra W, Aminian K, Chastin SFM, de Bruin ED, Helbostad JL, Bussmann JBJ (2013) Recommendations for standardizing validation procedures assessing physical activity of older persons by monitoring body postures and movements. Sensors (Basel) 14:1267–1277. doi:10.3390/s140101267

    Article  Google Scholar 

  59. Coley B, Najafi B, Paraschiv-Ionescu A, Aminian K (2005) Stair climbing detection during daily physical activity using a miniature gyroscope. Gait Posture 22:287–294. doi:10.1016/j.gaitpost.2004.08.008

    Article  PubMed  Google Scholar 

  60. Geraedts HAE, Zijlstra W, van Keeken HG, Zhang W, Stevens M (2015) Validation and user evaluation of a sensor-based method for detecting mobility-related activities in older adults. PLOS ONE 10:e0137668. doi:10.1371/journal.pone.0137668

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R (2012) Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Conf Proc IEEE Eng Med Biol Soc 2012:6402–6405. doi:10.1109/EMBC.2012.6347459

    PubMed  Google Scholar 

  62. Huisingh-Scheetz MJ, Kocherginsky M, Magett E, Rush P, Dale W, Waite L (2016) Relating wrist accelerometry measures to disability in older adults. Arch Gerontol Geriatr 62:68–74. doi:10.1016/j.archger.2015.09.004

    Article  PubMed  Google Scholar 

  63. Robben SMB, Pol MC, Buurman BM, Krose BJA (2016) Expert knowledge for modeling functional health from sensor data. Methods Inf Med. doi:10.3414/ME15-01-0072

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Sandra Hellmers, Sebastian Fudickar and Thomas Gerhardy for the help with the literature search terms and the literature search.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dasenbrock.

Ethics declarations

Conflict of interest

L. Dasenbrock, A. Heinks, M. Schwenk and J.M. Bauer state that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasenbrock, L., Heinks, A., Schwenk, M. et al. Technology-based measurements for screening, monitoring and preventing frailty. Z Gerontol Geriat 49, 581–595 (2016). https://doi.org/10.1007/s00391-016-1129-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-016-1129-7

Keywords

Schlüsselwörter

Navigation