Skip to main content

Advertisement

Log in

Prognostic value of DLGAP5 in colorectal cancer

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

DLG7 (disc large homolog 7) is a microtubule-associated protein encoded by DLGAP5 (DLG associated protein 5) gene and has an important role during spindle assembly. Spindle assembly deregulation is a well-known cause of genomic instability. The aim of this study was to investigate the influence of DLGAP5 expression on survival and to evaluate its potential use as a biomarker in colorectal cancer (CRC).

Methods

DLGAP5 expression was measured in the primary tumor and corresponding normal mucosa samples from 109 patients with CRC and correlated to clinical and pathological data. The results were validated in a second, publically available patient cohort. Molecular effects of DLG7/DLGAP5 in CRC were analyzed via functional assays in knockdown cell lines.

Results

DLGAP5 downregulation led to a significant reduction of the invasion and migration potential in CRC. In addition, DLGAP5 expression correlates with nodal status and advanced UICC stage (III–IV).Subgroup analyses revealed a correlation between DLGAP5 overexpression and poor survival in patients with non-metastatic disease (M0). Furthermore, overexpression of DLGAP5 is associated with worse overall survival in distinct molecular CRC subtypes.

Conclusions

The results of this study suggest the importance of DLGAP5 in defining a more aggressive CRC phenotype. DLG7/DLGAP5 represents a potential biomarker for CRC in molecular subgroups of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  Google Scholar 

  2. Atlas CG (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337. https://doi.org/10.1038/nature11252

    Article  CAS  Google Scholar 

  3. Tsou A-P, Yang C-W, Huang C-YF, Yu RC-T, Lee Y-CG, Chang C-W, Chen B-R, Chung Y-F, Fann M-J, Chi C-W, Chiu J-H, Chou C-K (2003) Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma. Oncogene 22:298–307. https://doi.org/10.1038/sj.onc.1206129

    Article  CAS  PubMed  Google Scholar 

  4. Wong J, Fang G (2006) HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol 173:879–891. https://doi.org/10.1083/jcb.200511132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ye F, Tan L, Yang Q, Xia Y, Deng L-W, Murata-Hori M, Liou Y-C (2011) HURP regulates chromosome congression by modulating kinesin Kif18A function. Curr Biol 21:1584–1591. https://doi.org/10.1016/j.cub.2011.08.024

    Article  CAS  PubMed  Google Scholar 

  6. Hsu JM, Lee YC, Yu CT, Huang CY (2004) Fbx7 functions in the SCF complex regulating Cdk1-cyclin B-phosphorylated hepatoma up-regulated protein (HURP) proteolysis by a proline-rich region. J Biol Chem 279:32592–32602. https://doi.org/10.1074/jbc.M404950200

    Article  CAS  PubMed  Google Scholar 

  7. Marumoto T, Zhang D, Saya H (2005) Aurora-A - a guardian of poles. Nat Rev Cancer 5:42–50. https://doi.org/10.1038/nrc1526

    Article  CAS  PubMed  Google Scholar 

  8. Wong J, Lerrigo R, Jang C-Y, Fang G (2008) Aurora A regulates the activity of HURP by controlling the accessibility of its microtubule-binding domain. Mol Biol Cell 19:2083–2091. https://doi.org/10.1091/mbc.e07-10-1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bassal S, Nomura N, Venter D, Brand K, McKay MJ, van der Spek PJ (2001) Characterization of a novel human cell-cycle-regulated homologue of Drosophila dlg1. Genomics 77:5–7. https://doi.org/10.1006/geno.2001.6570

    Article  CAS  PubMed  Google Scholar 

  10. Gomez CR, Kosari F, Munz J-M, Schreiber CA, Knutson GJ, Ida CM, El Khattouti A, Karnes RJ, Cheville JC, Vasmatzis G, Vuk-Pavlović S (2013) Prognostic value of discs large homolog 7 transcript levels in prostate cancer. PLoS One 8:e82833. https://doi.org/10.1371/journal.pone.0082833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stuart JE, Lusis EA, Scheck AC, Coons SW, Lal A, Perry A, Gutmann DH (2011) Identification of gene markers associated with aggressive meningioma by filtering across multiple sets of gene expression arrays. J Neuropathol Exp Neurol 70:1–12. https://doi.org/10.1097/NEN.0b013e3182018f1c

    Article  CAS  PubMed  Google Scholar 

  12. de Reyniès A, Assié G, Rickman DS, Tissier F, Groussin L, René-Corail F, Dousset B, Bertagna X, Clauser E, Bertherat J (2009) Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol 27:1108–1115. https://doi.org/10.1200/JCO.2008.18.5678

    Article  PubMed  Google Scholar 

  13. Fragoso MCBV, Almeida MQ, Mazzuco TL, Mariani BMP, Brito LP, Gonçalves TC, Alencar GA, Lima L de O, Faria AM, Bourdeau I, Lucon AM, Freire DS, Latronico AC, Mendonca BB, Lacroix A, Lerario AM (2012) Combined expression of BUB1B, DLGAP5, and PINK1 as predictors of poor outcome in adrenocortical tumors: validation in a Brazilian cohort of adult and pediatric patients. Eur J Endocrinol 166:61–67. https://doi.org/10.1530/EJE-11-0806

    Article  CAS  PubMed  Google Scholar 

  14. Ooi WF, Re A, Sidarovich V, Canella V, Arseni N, Adami V, Guarguaglini G, Giubettini M, Scaruffi P, Stigliani S, Patrizia L, Tonini GP, Quattrone A (2012) Segmental chromosome aberrations converge on overexpression of mitotic spindle regulatory genes in high-risk neuroblastoma. Genes Chromosom Cancer 51:545–546. https://doi.org/10.1002/gcc.21940

    Article  CAS  PubMed  Google Scholar 

  15. Wassmann K, Benezra R (2001) Mitotic checkpoints: from yeast to cancer. Curr Opin Genet Dev 11:83–90

    Article  CAS  PubMed  Google Scholar 

  16. Weaver BAA, Cleveland DW (2005) Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell 8:7–12. https://doi.org/10.1016/j.ccr.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  17. Szász AM, Lánczky A, Nagy Á, Förster S, Hark K, Green JE, Boussioutas A, Busuttil R, Szabó A, Győrffy B (2016) Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 7:49322–49333. https://doi.org/10.18632/oncotarget.10337

    Article  PubMed  PubMed Central  Google Scholar 

  18. García SA, Swiersy A, Radhakrishnan P, Branchi V, Nanduri LK, Gyorffy B, Betzler AM, Bork U, Kahlert C, Reißfelder C, Rahbari NN, Weitz J, Schölch S (2016) LDB1 overexpression is a negative prognostic factor in colorectal cancer. Oncotarget 7:84258–84270. https://doi.org/10.18632/oncotarget.12481

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mihály Z, Kormos M, Lánczky A, Dank M, Budczies J, Szász MA, Győrffy B (2013) A meta-analysis of gene expression-based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast Cancer Res Treat 140:219–232. https://doi.org/10.1007/s10549-013-2622-y

    Article  CAS  PubMed  Google Scholar 

  20. Dekervel J, Hompes D, Van Malenstein H, Popovic D, Sagaert X, De Moor B, Van Cutsem E, D’Hoore A, Verslype C, Van Pelt J (2014) Hypoxia-driven gene expression is an independent prognostic factor in stage II and III colon cancer patients. Clin Cancer Res 20:2159–2168. https://doi.org/10.1158/1078-0432.CCR-13-2958

    Article  CAS  PubMed  Google Scholar 

  21. Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, Kerr D, L a A, Arango D, Kruhøffer M, Ørntoft TF, Andersen CL, Gruidl M, Kamath VP, Yeatman TJ, Sieber OM (2010) Metastasis-associated gene expression changes predict poor outcomes in patients with Dukes’ stage B and C colorectal cancer. Cancer 15:7642–7651. https://doi.org/10.1158/1078-0432.CCR-09-1431

    Article  CAS  Google Scholar 

  22. Budinska E, Popovici V, Tejpar S, D’Ario G, Lapique N, Sikora KO, Di Narzo AF, Yan P, Graeme Hodgson J, Weinrich S, Bosman F, Roth A, Delorenzi M (2013) Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J Pathol 231:63–76. https://doi.org/10.1002/path.4212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clark-Langone KM, Sangli C, Krishnakumar J, Watson D (2010) Translating tumor biology into personalized treatment planning: analytical performance characteristics of the Oncotype DX®Colon Cancer Assay. BMC Cancer 10:691. https://doi.org/10.1186/1471-2407-10-691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Győrffy B, Benke Z, Lánczky A, Balázs B, Szállási Z, Timár J, Schäfer R (2012) RecurrenceOnline: an online analysis tool to determine breast cancer recurrence and hormone receptor status using microarray data. Breast Cancer Res Treat 132:1025–1034. https://doi.org/10.1007/s10549-011-1676-y

    Article  CAS  PubMed  Google Scholar 

  25. Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D, Sevillano M, Hernando-Momblona X, Da Silva-Diz V, Muñoz P, Clevers H, Sancho E, Mangues R, Batlle E (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8:511–524. https://doi.org/10.1016/j.stem.2011.02.020

    Article  CAS  PubMed  Google Scholar 

  26. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38:1043–1048. https://doi.org/10.1038/ng1861

    Article  CAS  PubMed  Google Scholar 

  27. Gudmundsson KO, Thorsteinsson L, Sigurjonsson OE, Keller JR, Olafsson K, Egeland T, Gudmundsson S, Rafnar T (2007) Gene expression analysis of hematopoietic progenitor cells identifies Dlg7 as a potential stem cell gene. Stem Cells 25:1498–1506. https://doi.org/10.1634/stemcells.2005-0479

    Article  CAS  PubMed  Google Scholar 

  28. Abdul Khalek FJ, Gallicano GI, Mishra L (2010) Colon cancer stem cells. Gastrointest Cancer Res:S16–S23.

  29. Huang Y-L, Chiu AW, Huan SK, Wang Y-C, Ju J-P, Lu C-L (2003) Prognostic significance of hepatoma-up-regulated protein expression in patients with urinary bladder transitional cell carcinoma. Anticancer Res 23

  30. Kuo T-C, Chang P-Y, Huang S-F, Chou C-K, Chao CC-K (2012) Knockdown of HURP inhibits the proliferation of hepacellular carcinoma cells via downregulation of gankyrin and accumulation of p53. Biochem Pharmacol 83:758–768. https://doi.org/10.1016/j.bcp.2011.12.034

    Article  CAS  PubMed  Google Scholar 

  31. Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y, Sumitomo H, Masuda T, Dawson S, Shimada Y, Mayer RJ, Fujita J (2005) The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 8:75–87. https://doi.org/10.1016/j.ccr.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  32. Chang M-L, Lin S-M, Yeh C-T (2011) HURP expression-assisted risk scores identify prognosis distinguishable subgroups in early stage liver cancer. PLoS One 6:e26323. https://doi.org/10.1371/journal.pone.0026323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jacobsen A, Bosch LJW, Martens-de Kemp SR, Carvalho B, Sillars-Hardebol AH, Dobson RJ, de Rinaldis E, Meijer GA, Abeln S, Heringa J, Fijneman RJA, Feenstra KA (2018) Aurora kinase A (AURKA) interaction with Wnt and Ras-MAPK signalling pathways in colorectal cancer. Sci Rep 8:7522. https://doi.org/10.1038/s41598-018-24982-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hilton JF, Shapiro GI (2014) Aurora kinase inhibition as an anticancer strategy. J Clin Oncol 32:57–59. https://doi.org/10.1200/JCO.2013.50.7988

    Article  CAS  PubMed  Google Scholar 

  35. Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, Mattaj IW (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104:83–93

    Article  CAS  PubMed  Google Scholar 

  36. Yu C-TR, Hsu J-M, Lee Y-CG, Tsou A-P, Chou C-K, Huang C-YF (2005) Phosphorylation and stabilization of HURP by Aurora-A: implication of HURP as a transforming target of Aurora-A. Mol Cell Biol 25:5789–5800. https://doi.org/10.1128/MCB.25.14.5789-5800.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Silljé HHW, Nagel S, Körner R, Nigg EA (2006) HURP is a Ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16:731–742. https://doi.org/10.1016/j.cub.2006.02.070

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was initially supervised by our friend and mentor Prof. Moritz Koch, who passed away in 2015. This paper is dedicated to his memory.

The authors thank Melanie Bernhard, Maria Thomalla-Starzl, and Marzena Knyssok-Sypniewski for outstanding technical assistance.

Author contribution list

  1. 1.

    Vittorio Branchi: study design and supervision, data collection, statistical analysis, data interpretation, drafting of the manuscript

  2. 2.

    Sebastian Garcia: data collection, statistical analysis, data interpretation, critical revision of the manuscript

  3. 3.

    Praveen Radhakrishnan: data interpretation, critical revision of the manuscript

  4. 4.

    Balázs Győrffy: statistical analysis, critical revision of the manuscript

  5. 5.

    Barbara Hissa: data interpretation, critical revision of the manuscript

  6. 6.

    Martin Schneider: data interpretation, critical revision of the manuscript

  7. 7.

    Christoph Reissfelder: data interpretation, critical revision of the manuscript

  8. 8.

    Sebastian Schölch: study design and supervision, statistical analysis, data interpretation, drafting of the manuscript

Funding

This work was funded by the KFO 227 program (Clinical Research Group 227: Colorectal cancer: from primary tumor progression towards metastases (WE 3548/4–1/2) of Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schölch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (ethics committee of the University of Heidelberg, ethics committee number 323/2004) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branchi, V., García, S.A., Radhakrishnan, P. et al. Prognostic value of DLGAP5 in colorectal cancer. Int J Colorectal Dis 34, 1455–1465 (2019). https://doi.org/10.1007/s00384-019-03339-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-019-03339-6

Keywords

Navigation