Skip to main content
Log in

Lancemaside A ameliorates colitis by inhibiting NF-κB activation in TNBS-induced colitis mice

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

In a preliminary study, we found that lancemaside A, which is a main constituent of Codonopsis lanceolata used as an herbal medicine for inflammatory diseases, potently inhibits lipopolysaccharide (LPS)-stimulated, TLR-4-linked NF-κB activation of NF-κB luciferase reporter gene-transfected 293-hTLR4-hemagglutinin (HA) cells. Therefore, we investigated its inhibitory effect in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in mice.

Methods

We measured the ability of lancemaside A to inhibit LPS-stimulated, TLR-4-linked NF-κB activation in human embryonic kidney (HEK) cells, as well as to inhibit colitis outcomes in TNBS-induced colitis in mice. We also measured levels of the inflammatory markers, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6, and their transcription factor, NF-κB, in intestinal mucosa by enzyme-linked immunosorbent assay and immunoblotting.

Result

Intrarectal treatment of TNBS in mice caused colon shortening and also increased colonic expression of IL-1β, IL-6, and TNF-α expression. Oral administration of lancemaside A (10 and 20 mg/kg), inhibited colon shortening and myeloperoxidase activity in TNBS-induced colitic mice and also decreased colonic expression of IL-1β, IL-6, and TNF-α. Lancemaside A inhibited NF-κB activation induced by TNBS, as well as the expression of cyclooxygenase 2 and TLR-4. Lancemaside A also reduced the activity of intestinal bacterial β-glucuronidase that was induced by TNBS.

Conclusions

Lancemaside A ameliorates colitis via inhibition of TLR-4-linked NF-κB activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IBD:

inflammatory bowel disease

DMEM:

Dulbecco’s modified Eagle’s medium

ECL:

enhanced chemiluminescence

ELISA:

enzyme-linked immunosorbent assay

HA:

hemagglutinin

HEK:

human embryonic kidney

IL:

interleukin

LPS:

lipopolysaccharide

RIPA:

radio-immunoprecipitation assay

TLR:

toll-like receptor

TNBS:

2,4,6-trinitrobenzenesulfonic acid

TNF:

tumor necrosis factor

References

  1. Benno P, Leijonmarck CE, Monsen U, Uribe A (1993) Functional alteration of the microflora in patients with ulcerative colitis. Scand J Gastroenterol 28:839–844

    Article  CAS  PubMed  Google Scholar 

  2. Berrebi D, Languepin J, Ferkdadji L, Foussat A, De Lagausie P, Paris R, Emilie D, Mougenot JF, Cezard JP, Navarro J, Peuchmaur M (2003) Cytokines, chemokine receptors, and homing molecule distribution in the rectum and stomach of pediatric patients with ulcerative colitis. J Pediatr Gastroenterol Nutr 37:300–308

    Article  CAS  PubMed  Google Scholar 

  3. Gorbach SL, Nahas L (1968) Studies of intestinal microflora. V. Fecal microbial ecology in ulcerative colitis and regional enteritis, relationship to severity of disease and chemotherapy. Gastroenterology 54:575–587

    CAS  PubMed  Google Scholar 

  4. Binder V (2004) Epidemiology of IBD during the twentieth century: an integrated view. Best Pract Res Clin Gastroenterol 18:463–479

    Article  PubMed  Google Scholar 

  5. Chandran P, Satthaporn Robins A, Eremin O (2003) Inflammatory bowel disease: dysfunction of GALT and gut bacterial flora (II). Surgeon 1:125–136

    Article  CAS  PubMed  Google Scholar 

  6. Hill MJ, Drasar BS (1975) The normal colonic bacterial flora. Gut 16:318–323

    Article  CAS  PubMed  Google Scholar 

  7. Simon GL, Gorbach SL (1984) Intestinal flora in health and disease. Gastroenterology 86:174–193

    CAS  PubMed  Google Scholar 

  8. Chung KT, Fulk GE, Slein MW (1975) Tryptophanase of fecal flora as a possible factor in the etiology of colon cancer. J Natl Cancer Inst 54:1073–1078

    CAS  PubMed  Google Scholar 

  9. Ganguly NK, Kingham JG, Lloyd B, Lloyd RS, Price CP, Triger DR, Wright R (1978) Acid hydrolases in monocytes from patients with inflammatory bowel disease, chronic liver disease, and rheumatoid arthritis. Lancet 1(8073):1073–1075

    Article  CAS  PubMed  Google Scholar 

  10. Rhodes JM, Gallimore R, Elias E, Allan RN, Kennedy JF (1985) Fecal mucus degrading glycosidase in ulcerative colitis and Crohn’s disease. Gut 26:761–765

    Article  CAS  PubMed  Google Scholar 

  11. Jung HC, Eckmann I, Yang SK, Panja A, Fierer J, Morzycka-Worblewska E, Kagnoff MF (1995) A distinct array of proinflammatory cytokine is expressed in human colon epithelia cells in response to bacterial invasion. J Clin Invest 95:55–65

    Article  CAS  PubMed  Google Scholar 

  12. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    Article  CAS  PubMed  Google Scholar 

  13. Ingalls RR, Heine H, Lien E, Yoshimura A, Glenbock D (1999) Lipopolysaccharide recognition, CD14, and lipopolysaccharide receptors. Infect Dis Clin North Am 13:341–353

    Article  CAS  PubMed  Google Scholar 

  14. Cario E, Pldolsky DK (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68:7010–7017

    Article  CAS  PubMed  Google Scholar 

  15. Poltorak A, He X, Smirnova I, Liu M, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  16. Mizoguchi A, Mizoguchi E (2008) Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol 43:1–17

    Article  PubMed  Google Scholar 

  17. Ushijima M, Komoto N, Sugizono Y, Mizuno I, Sumihiro M, Ichikawa M, Hayama M, Kawahara N, Nakane T, Shirota O, Sekita S, Kuroyanagi M (2008) Triterpene glycosides from the roots of Codonopsis lanceolata. Chem Pharm Bull (Tokyo) 56:308–314

    Article  CAS  Google Scholar 

  18. Lee KT, Choi J, Jung WT, Nam JH, Jung HJ, Park HJ (2002) Structure of a new echinocystic acid bisdesmoside isolated from Codonopsis lanceolata roots and the cytotoxic activity of prosapogenins. J Agric Food Chem 50:4190–4193

    Article  CAS  PubMed  Google Scholar 

  19. Xu LP, Wang H, Yuan Z (2008) Triterpenoid saponins with anti-inflammatory activity from Codonopsis lanceolata. Planta Med 74:1412–1415

    Article  CAS  PubMed  Google Scholar 

  20. Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS, Xu R, Inoue H, Arditi M, Dannenberg AJ, Abreu MT (2006) Cox-2 is regulated by toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology 131:862–877

    Article  CAS  PubMed  Google Scholar 

  21. Hollenbach E, ViethM RA, Neumann M, Malfertheiner P, Naumann M (2005) Inhibition of RICK/Nuclear factor-kB and p38 signalling attenuates the inflammatory response in a murine model of Crohn’s disease. J Biol Chem 280:14981–14988

    Article  CAS  PubMed  Google Scholar 

  22. Mullane KM, Kraemer R, Smith B (1985) Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 14:157–167

    Article  CAS  PubMed  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  24. Shin YW, Bae EA, Kim SS, Lee YC, Kim DH (2005) Effect of ginsenoside Rb1 and compound K in chronic oxazolone-induced mouse dermatitis. Int Immunopharmacol 5:1183–1191

    Article  CAS  PubMed  Google Scholar 

  25. Harris F, Phoenix DA (1997) An investigation into the ability of C-terminal homologues of Escherichia coli low molecular mass penicillin-binding proteins 4, 5 and 6 to undergo membrane interaction. Biochimie 79:171–174

    Article  CAS  PubMed  Google Scholar 

  26. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Büschenfelde KH (1995) Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease. Clin Exp Immunol 102:448–455

    Article  CAS  PubMed  Google Scholar 

  27. Bukovská A, Cikos S, Juhás S, Il'ková G, Rehák P, Koppel J (2007) Effects of a combination of thyme and oregano essential oils on TNBS-induced colitis in mice. Mediators Inflamm 2007:23296

    Article  PubMed  CAS  Google Scholar 

  28. Bai A, Lu N, Guo Y, Fan X (2008) Tanshinone IIA ameliorates trinitrobenzene sulfonic acid (TNBS)-induced murine colitis. Dig Dis Sci 53:421–428

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joh, EH., Lee, IA., Han, SJ. et al. Lancemaside A ameliorates colitis by inhibiting NF-κB activation in TNBS-induced colitis mice. Int J Colorectal Dis 25, 545–551 (2010). https://doi.org/10.1007/s00384-009-0858-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-009-0858-0

Keywords

Navigation