Skip to main content

Advertisement

Log in

Effects of iron deprivation or chelation on DNA damage in experimental colitis

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background and aims

In inflammatory bowel diseases iron contributes to the formation of DNA adducts through the production of hydroxyl radicals. The aim of our study was to evaluate the effects of dietary or pharmacological iron deprivation in an experimental model of colitis in the rat and its potential protective effect against DNA damage.

Methods

Colitis was induced in rats by intracolonic instillation of dinitrobenzene sulphonic acid. Rats were assigned to an iron-deprived diet or to desferrioxamine preceding the induction of colitis. The severity of colitis was assessed by the presence of bloody diarrhea, colonic macroscopic damage score, body-weight variations and the amount of DNA colonic adducts. Hepatic and colonic iron concentrations were measured.

Results

Treated rats experienced less diarrhea and did not lose weight in comparison to untreated animals. The macroscopic damage score was significantly reduced in the iron-deprived diet for the 5-week group (P=0.03). Liver and colonic iron levels were significantly more reduced in the iron-deprived groups than in the standard diet group (P<0.03 and P<0.01 after a 3- and 5-week iron-deprived diet, respectively). DNA adduct formation was significantly reduced in the groups deprived of iron for 5 weeks (P<0.001) or treated with desferrioxamine (P<0.01).

Conclusions

The degree of colitis caused by DNBS is macroscopically improved by dietary iron deprivation and to a lesser extent by pharmacological chelation; genomic damage is reduced by dietary iron deprivation or chelation, and this may have clinical implications on cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2

Similar content being viewed by others

References

  1. Babbs CF (1992) Oxygen radicals in ulcerative colitis. Free Rad Biol Med 13:169–182

    Article  CAS  PubMed  Google Scholar 

  2. Lih-Brodi L, Powell SR, Collier KP, Reddy GM, Cerchia R, Kahn E, Weissman GS, Katz S, Floyd RA, et al (1996) Increased oxidative stress and decreased antioxidant defences in mucosa of inflammatory bowel disease. Dig Dis Sci 41:2078–2086

    PubMed  Google Scholar 

  3. Sturniolo GC, Mestriner C, Lecis PE, D’Odorico A, Venturi C, Irato P, Cecchetto A, Tropea A, Longo G, et al (1998) Altered plasma and mucosal concentrations of trace elements and antioxidants in active ulcerative colitis. Scand J Gastroenterol 33:644–649

    Article  CAS  PubMed  Google Scholar 

  4. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 86:1–85

    Google Scholar 

  5. Eybl V, Kotyzova D, Kolek M, Katensky J, Nielsen P (2002) The influence of Deferiprone (L1) and deferoxamine on iron and essential element tissue level and parameters of oxidative status in dietary iron-loaded mice. Toxicol Lett 128:169–175

    Article  CAS  PubMed  Google Scholar 

  6. Winyard PG, Blake DR, Chirico S, Gutteridge JM, Lunec J (1987) Mechanism of exacerbation of rheumatoid synovitis by tota-dose iron infusion: in-vivo demonstration of iron-promoted oxidant stress. Lancet 1:69–72

    Article  CAS  PubMed  Google Scholar 

  7. Kawai M, Sumimoto S, Kasajima Y, Hamamoto T (1992) A case of ulcerative colitis induced by oral ferrous sulfate. Acta Paediatr Jpn 34:476–478

    CAS  PubMed  Google Scholar 

  8. Erichsen K, Hausken T, Berge R (1998) Effect of oral iron therapy on antioxidant defense in active Crohn’s disease. Digestion 59:FOLM 1287

    Google Scholar 

  9. Cuzzocrea S, Mazzon E, De Sarro A, Caputi AP (2000) Role of free radicals and poly (ADP-ribose) synthethase in intestinal tight junction permeability. Mol Med 6:766–778

    CAS  PubMed  Google Scholar 

  10. Robinson CE, Kottapalli V, D’Astice M, Fields JZ, Winship D, Keshavarzian A (1997) Regulation of neutrophils in ulcerative colitis by colonic factors: a possible mechanism of neutrophil activation and tissue damage. J Lab Clin Med 130:590–606

    CAS  PubMed  Google Scholar 

  11. Lin M, Rippe RA, Niemela O, Brittenham G, Tsukamoto H (1997) Role of iron in NF-kappa B activation and cytokine gene expression by rat hepatic macrophages. Am J Physiol 272:G1355–64

    CAS  PubMed  Google Scholar 

  12. Schmidt KN, Amstad P, Cerutti B, Baeuerle PA (1995) The role of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kB. Chem Biol 2:13–22

    CAS  PubMed  Google Scholar 

  13. Halliwell B, Aruoma OL (1991) DNA damage by oxygen-derived species. FEBS Lett 281:9–19

    Article  CAS  PubMed  Google Scholar 

  14. Toyokuni S (2002) Iron and carcinogenesis: from Fenton reaction to target genes. Redox Rep 7:189–197

    Article  CAS  PubMed  Google Scholar 

  15. Polla BS (1999) Therapy by taking away: the case of iron. Biochem Pharmacol 57:1345–1349

    Article  CAS  PubMed  Google Scholar 

  16. Giardina PJ, Grady RW. (1995) Chelation therapy in beta-thalassemia: the benefits and limitations of desferrioxamine. Semin Hematol 32:304–312

    CAS  PubMed  Google Scholar 

  17. Donfrancesco A, De Bernardi B, Carli M, Mancini A, Nigro M, De Sio L, Casale F, Bagnulo S, Helson L, et al (1995) Deferoxamine followed by cyclophosphamide, etoposide, carboplatin, thiotepa, induction regimen in advanced neuroblastoma: preliminary results. Italian Neuroblastoma Cooperative Group. Eur J Cancer 31A:612–615

    Article  CAS  PubMed  Google Scholar 

  18. Crapper MDR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337:1304–1308

    Article  PubMed  Google Scholar 

  19. Kruck TP, Fischer EA, Mc Lachlan DR (1993) A predictor for side effects in patients with Alzheimer’s disease treated with deferoxamine mesylate. Clin Pharmacol Ther 53:30–37

    CAS  PubMed  Google Scholar 

  20. Schnellmann JG, Pumford NR, Kusewitt DF, Bucci TJ, Hinson JA (1999) Deferoxamine delays the development of the hepatotoxicity of acetaminophen in mice. Toxicol Lett 106:79–88

    Article  CAS  PubMed  Google Scholar 

  21. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 98:795–803

    Google Scholar 

  22. Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN (1990) Oxidative damage to DNA during aging: 8-hydroxy-2-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 87:4533–4537

    CAS  PubMed  Google Scholar 

  23. Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanosine. Proc Natl Acad Sci USA 95:288–293

    Article  CAS  PubMed  Google Scholar 

  24. Reifen R, Matas Z, Zeidel L, Berkovitch Z, Bujanover Y (2000) Iron supplementation may aggravate inflammatory status of colitis in a rat model. Dig Dis Sci 45:394–397

    Article  CAS  PubMed  Google Scholar 

  25. Carrier J, Aghdassi E, Platt I, Mullen J, Allard JP (2001) Effect of oral iron supplementation on oxidative stress and colonic inflammation in rats with induced colitis. Aliment Pharmacol Ther15:1989–1999

    Article  Google Scholar 

  26. Carrier J, Aghdassi E, Cullen J, Allord JP (2002) Iron supplementation increases disease activity and vitamin E ameliorates the effect in rats with dextran sulfate sodium-induced colitis. J Nutr 132:3146–3150

    CAS  PubMed  Google Scholar 

  27. Haq RU, Werely JP, Chitambar CR (1995) Induction of apoptosis by iron deprivation in human leukemic CCRF-CEM cells. Exp Hematol 23:428–432

    CAS  PubMed  Google Scholar 

  28. Kovar J, Stunz LL, Stewart BC, Kriegerbeckova K, Ashman RF, Kemp JD (1997) Direct evidence that iron deprivation induces apoptosis in murine lymphoma 38C13. Pathobiology 65:61–68

    CAS  PubMed  Google Scholar 

  29. Toyokuni S (2002) Iron and carcinogenesis: from Fenton reaction to target genes. Redox Rep 7:189–197

    Article  CAS  PubMed  Google Scholar 

  30. Ablin J, Shalev O, Okon E, Karmeli F, Rachmilewitz D (1999) Deferiprone, an oral iron chelator, ameliorates experiment colitis and gastric ulceration in rats. Inflamm Bowel Dis 5:253–261

    CAS  PubMed  Google Scholar 

  31. Emerit J, Pelletier S, Likforman J, Pasquier C, Thuillier A (1991) Phase II trial of copper zinc superoxide dismutase (CuZn SOD) in the treatment of Crohn’s disease. Free Radic Res Commun 12–13:563–569

    Google Scholar 

  32. Millar AD, Rampton DS, Blake DR (2000) Effects of iron and iron chelation in vitro on mucosal oxidant activity in ulcerative colitis. Aliment Pharmacol Ther 14:1163–1168

    Article  CAS  PubMed  Google Scholar 

  33. Carotenuto P, Pontesilli O, Cambier JC, Hayward AR (1986) Desferoxamine blocks IL 2 receptor expression on human T lymphocytes. J Immunol 136:2342–2347

    CAS  PubMed  Google Scholar 

  34. Hoffbrand AV, Ganeshaguru K, Hooton JW, Tattersal MH (1976) Effects of iron deficiency and desferrioxamine on DNA synthesis in human cells. Br J Haematol 33:517–526

    CAS  PubMed  Google Scholar 

  35. Oldemburg B, Koningsberger JC, Van Berge Henegouwen GP, Van Asbeck BS, Marks JJM (2001) Review article: iron and inflammatory bowel disease. Aliment Pharmacol Ther 15:429–438

    Article  PubMed  Google Scholar 

  36. Seril DN, Liao J, Ho KL, Warsi A, Yang CS, Yang GY (2002) Dietary iron supplementation enhances DSS-induced colitis and associated colorectal carcinoma development in mice. Dig Dis Sci 47:1266–278

    Article  CAS  PubMed  Google Scholar 

  37. Christensen DW, Kisling R, Thompson J, Kirby MA (2001) Deferoxamine toxicity in hepatoma and primary rat cortical brain cultures. Hum Exp Toxicol 20:365–372

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. M. Minotto and Mrs. C. Carlotto for their technical assistance. This work was supported in part by MIUR 60% 2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Sturniolo.

Additional information

M. Barollo and R. D’Incà contributed equally to this paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barollo, M., D’Incà, R., Scarpa, M. et al. Effects of iron deprivation or chelation on DNA damage in experimental colitis. Int J Colorectal Dis 19, 461–466 (2004). https://doi.org/10.1007/s00384-004-0588-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-004-0588-2

Keywords

Navigation